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Abstract

Using mathematical context such as Metrical matrix and Set notation methods, the formation of rock forming minerals
from magma, depends on the numerical value of each mineral under thermodynamic conditions. Any stable mineral
depends on the numerical value for that mineral to exist at certain control condition of temperature, especially at room
temperature of 250C (298k) and 1atm pressure. The problem involving the distribution of chemical elements and
elemental substitutions in rocks during crystallization of magma, from the beginning of crystallization to the end of
crystallization was mathematically formulated using Bowen’s and Goldschmidt combined concept and models and
analyzed using Metrical matrix and Set notion methods. This research was focused on bridging the gap between
Bowen’s and Goldschmidt concepts concerning the problem of elemental substitution and distribution of chemical
elements in rocks throughout the time of crystallization from the beginning to the end of crystallization with
mathematical foundation such as Metrical matrix and Set notion methods under thermodynamic change. Finally the
“mathematical connection” between Bowen’s and Goldschmidt concepts was used in this research for complete
explanation of rock forming minerals from the beginning to the end of crystallization and would help the ‘beginners’
especially students of Earth sciences such as Geology, Mineralogy, Petrology and other chemical science such as
Geochemistry and Petroleum Geology to have clear understanding of rock forming minerals from the Magma.
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1. Introduction

The gap between Bowen’s and Goldschmidt concepts concerning the problem of elemental substitution and distribution
of chemical elements in rocks throughout the time of crystallization from the beginning to the end of crystallization
would be investigated using mathematical context with respect to thermodynamic principles.

Geometrically, several minerals set in matrices and aggregate themselves in coordinate to form rocks and chemically
elements of several properties bonded together to form minerals, which by definition is inorganically in composition
with distinct chemical composition. Goldschmidt classified these elements according to their class of materials such as
siderophile, lithophile and chalcophile elements as well as atmophile elements. But Mendeleev’s (1914) arranged these
elements in periodic table according to size and atomic mass. According to modern periodic law, atomic number
increases from left to right and from top to bottom of periodic table. Therefore the size and electronegativity of
elements increase across the period and the size increases with decreasing electronegativity down the group. This
pattern of modern periodic law would be used to explain how ions would enter into the lattice of a growing crystal
during crystallization of silicate magma as a function of size and electronegativity. During crystallization of magma,
temperature falls, with increasing content of silicon in the magma. This forms two series of reactions (Bowen’s), one by
interaction with magma, with the first mineral formed, to form minerals of different chemical composition, but with the
same crystallographic structure. This is the case of solid solution in the magma. While the other, the first crystal to form,
initially interact with the magma to form a solid with different crystallographic structure, and distinct chemical
composition. This is the case of fractional crystallization in the magma.

The term solid solution and fractional crystallization are used simultaneously in this research to define the two series of
reactions as stipulated by Bowen’s reaction series.

Mathematically, the formation of rock forming minerals from magma, depends on the numerical values of each of the
minerals under thermodynamic change. Any stable materials depend on the numerical values for those materials to exist
at that certain ambient temperature, especially at room temperature of 250C (298k), at 1atm pressure. The problem
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involving the distribution of chemical elements and elemental substitutions in rock during crystallization of magma M ,
from the beginning of crystallization to the end of crystallization would be postulated to some an extent using combined
Goldschmidt and Bowen’s concept with respect to electronegativity and radius ratio, which states that, for ions of
various electronegativities and sizes to compete for the space in a lattice of a growing crystal;

1. The one with more electronegative would preferentially enter into the lattice of the growing crystal of silicate radical
because the nucleus of silicate radical is electronegative provided modern periodic law is obeyed and
2. That ions of closest radius ( δ ) to the nucleus of formed crystal substitute themselves before the ion of other radius
ratio according to Wood (2003).

Bowen (1928) utilized temperature and time to establish relationships among essential rock-forming minerals, while
Goldschmidt (1937) used ionic charge and size to explain ionic substitutions in crystals (Diadochi).

1. In a mathematical context, a significant challenge arises as there was no documented mathematical framework
complementing the explanation of Bowen's reaction series, which encompasses the continuous (solid solution) and
discontinuous (fractional crystallization) reaction series.

2. Both Bowen and Goldschmidt lacked a mathematical connection in their rules, hindering a complete mathematical
explanation of rock-forming minerals and their crystallization processes.

3. To achieve a holistic understanding, a need exists to bridge the gap between Bowen's and Goldschmidt's rules with a
mathematical foundation to comprehensively explain the formation of rock-forming minerals and their reactions.

This research is focused on bridging the gap between Bowen’s and Goldschmidt concepts concerning the “problem of
elemental substitution and distribution of chemical elements in rocks throughout the time of crystallization from the
beginning to the end of crystallization with mathematical foundation such as Metrical matrix and Set notion under
thermodynamic change” with the following objectives;

1. With a mathematical context, Bowen’s and the Goldschmidt combined concept would be established using proper
computations of numerical values of minerals under thermodynamic conditions which bridge the gap between the two
combined rules

2. Mathematical methods such as Metrical Matrix and Set notion would be used to compute and define all the minerals
and rocks in a complex plane of magma W .

2. Literature Review

Bowen’s reaction principle, first propounded in 1928 by Norman Bowen, which explains how mineral can respond to
changing equilibrium conditions when a magma is cooled, by either a continuous diffusing – controlled exchange of
elements with the magma or discontinuous melting of the material [1]

The periodic law was developed independently by Dmitri Mendeleev and Lothar Meyer in 1869. Mendeleev created the
first periodic table and was shortly followed by Meyer [2]. They both arranged the elements by their mass and proposed
that certain properties periodically reoccur. Meyer formed his periodic law based on the atomic volume or molar
volume, which is the atomic mass divided by the density in solid form. Mendeleev's table is noteworthy because it
exhibits mostly accurate values for atomic mass and it also contains blank spaces for unknown elements.

Goldschmidt proposed his Classical general rules to explain the distribution of the elements, in which ions of similar
size and charge substitute themselves [3].

Ringwood proposed the complementary use of the concept of electronegativity in order to understand the distributions
of the chemical elements that could not be explained completely with the Goldschmidtian rules, especially when the
minerals being investigated had high percentages of covalent bonding [4].

Bernard J. Wood Modifies Goldschmidt rules 2 and 3, that the site has a preferred radius of Ion (r) which eaters mostly
easily, for ions of the same charge, those which are closest in radius to enter most easily, ions which are larger or
smaller are discriminated against [5].

Fournier and Rowe, state that silica Geothermomenter works because that solubility of the various silica minerals
(Quartz, and chalcedony, SiO2) increase monotonically with temperature [6]

Accordind to Balogun Ometere Deborah, Oluwafemi Israel Oluwarotimi and Famakinwa Olamigoke Emmanuel (2024),
who reviewed Adams-Bashforth method for numerical solution of first order ordinary differential equations and used it
to solve first order ordinary differential equation for the field of physical science and Engineering especially the
population growth [7]. The Adams -Bashforth methods were designed by John Couch Adams to solve a differential
equation modelling capillary action due to Francis Bashfor

Toramaru, A., and Kichise, T., [8], proposed a new numerical experiments to study the influence of different cooling
rates and classical nucleation theory parameters on the crystal number density measured under constrained conditions in
the laboratory experiments.
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3. Mathematical Methods

Mathematical methods are used to resolve the problem of elemental substitution and distribution of chemical elements
in rock throughout the time of crystallization from the beginning to the end of crystallization. The mathematical
methods include:

a. Matrix method

b. Set Notation Method

3.1 Metrical Matrix

G.V. Gibbs, [9] used metrical matrix to find the equation of a lattice (crystal) plane and its Miller indices as explained
below.

Where

2

2

2

 cos  cos
 cos  cos
 cos  cos

a ab ac
G ab b bc

ac bc c

 
 
 



Suppose that the unit cell dimensions of a triclinic rhodonite crystal are a = 10.497Å

b =9.797Å, c= 12.185Å, 103.00 , 108.51  =82.50and      with this information, the metrical matric becomes

110.187009 13.423197 40.606321
13.423197 95.981209 26.853857
40.606321 26.853857 148.474225

G
 

   
   

3.2 Rough set Theory

Shaaban M. Shaaban, Sameh Z. Tawfik [10], rough used set theory to extract volcanic rocks information effectively, a
large number of characteristic data must be objectively filtered out. When the best combination of characteristic
parameters is achieved, it can be used to identify volcanic rocks precisely. After evaluating many non-linearity
computational methods, no further data or previous knowledge were found to be needed for RS theory. The study of
geological and volcanic rock information based on RS is a sort of new solution to the mainly geological high-
dimensional complex NP (Nondeterministic Polynomial) problems.

1. Information System

2. Indiscernible Relation

3.3 Methods Adopted in this Research

Metrical Matrix

Achuenu and others [11] used the mathematical equation below to calculate the numerical values of all the minerals in
rocks with respect to thermodynamics and it represents the Mathematical connection between Bowen’s and
Goldschmidt concepts.

Therefore for;
P

n r

n
p

 
 
 

 [β−α]n+p (Z0 )o�=
n
p βn−p α0 (Z0 )o�−

n
p βn−p α1 (Z0 )o�+

n
p βn−p ∝2(Z0 )o�

Mathematically, in complex analysis;

i2 = -1

0 0 0 0[ ] ( ) [ ]( ) {[ ]( ) } [ ]( )
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p    
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 
 ∝

‘i’ is a complex number in silicate Magma.

(ncp,) =
n
p

n
p = n!

n−p ! p!
and O! =1

δ = o, p, a, m and f

Where Z0 is the silicate identity and
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η =
Z−

X+ (ionic spacies)

‘ η ’ is the strength of the magma W , which is the ratio of the silicate radical z- to that of cation x+ under electrolytic
condition and ‘p’ is the recipient cation which depends on ‘ η ’.

n
p Is the coefficient of rock forming minerals and it determines the number of outcomes of each mineral in the melt

0( )Z


M .

Where, o, p, a. and m are olivine, pyroxene, amphibole, mica and feldspar

3.4 Anhydrous Melt, W

Magma with no water content at high temperature, silica deficient and low viscosity.

3.4.1 Mathematical Expression for Mafic Olivine Series: ( 2β p p ) (Z0 )o�

2
0

P

n r

 
 
 

 [α+iβ]2(Z0 )o� =1 β2 (Z0 )o�− 2 β1 ∝1 (Z0 )o�+1 ∝2 (Z0 )o�

Given that, β = Magnesium

∝ =Iron

Y = Calcium, Chromium, Nickel or Manganese

(Z0 )o�= Si O4

From equation above, we can rewrite it as;

2
0

P

n r

 
 
 

 [α+iβ]2 Si O4 = 1 Mg2 SiO4 +i{2 MgFe SiO4 }+1 Fe2Si O4

Mg+iFe]2 Si O4 =Mg2 Si O4 +i[Mg Fe Si O4+i[MgFe]SiO4 +Fe2 Si O4

2
0

P

n r

 
 
 

 [Mg+iFe]n+p Si O4 = Forsterite+i Hyalosiderite +i[Hortonolite]+Fayalite

According to Achuenu and others (2025), Mg2-pFepSiO4 is an ‘Olivine series’ formula that can be used to calculate all
olivine minerals from the melt W , where p is an integer and ranges from 0 to 2 in olivine crystals. At p equals to zero,
100% Forsterite (Fo) crystallizes with chemical formula of Mg2SiO4 and at p equals to 2, Forsterite (fo) disappears and
100% of pure Fayalite (Fa) crystallizes with chemical formula of Fe2SiO4(s) .Therefore forsterite, Hyalosiderite ,
Hortornolite and fayalite are the primary olivines in the mafic olivine series.

3.4.2 Expected Mathematical Expression for Mafic Pyroxene Series: [ 2β p p ](Z0 )p�

2
0

P

n r

 
 
 

 [β + α]2+p Si2O6 = 1 Mg2 Si2O6 + i[2 MgFe Si2O6] + Fe2 Si2O6

P

n r

n
p

 
 
 

 [β+α]n+p Si2 O6 =Mg2 Si2 O6 +i[Mg Fe] Si2 O6+i[MgFe]Si2 O6 +Fe2 Si2 O6

Pyroxene = Enstatite +Magnesio-hypersthene + Ferro-hypersthene + Ferrosilite

Mg2-pFepSi2O6 is a pyroxene series, where p range from 0 to 2 in pyroxene. At p equals to zero, 100% Enstatite (En)
crystallizes with chemical formula of Mg2Si2O6 and at p equals to 2, Enstatite disappears and 100% of pure Ferrosilite
crystallizes with chemical formula of Fe2Si2O6

Therefore Enstaite, Hypersthene, Eulite and ferrosilite are the primary pyroxenes in the mafic pyroxene series.

3.5 Hydrous Melt

Magma with water content at low temperature, silica saturation and high viscosity

3.5.1 Expected Mathematical Expression for Mafic Amphibole, 7 0[ ]( ) 2p p aZ  ∝

0( )aZ = Si4O11(OH)-7

0( )aZ 2 = Si8O22(OH)2
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7
[Mg+Fe] Si O (OH) =1[Mg ]Si O (OH) +7i[Mg Fe ]Si O ( OH) +21[Mg Fe ]Si O (OH) +

0
30i[Mg Fe ]Si O (OH) +30[Mg Fe ]Si O (OH) +21i[Mg F e ]Si O (OH) +7[MgFe ]Si O (OH)

+1i[Fe ]Si O (OH)

 
 
 



2

Then;

β7− p∝p (Z0 )a�2 = [(Mg7-pFep)(Si8O22(OH)2]

According to Achuenu and others (2025), [(Mg7-pFep)(Si8O22(OH)2] is a chemical formula for an Amphibole series,
when p ranges from 0 to 7. At p equals to zero, 100% of Kupfferite (Ku) with chemical formula of Mg7Si8O22(OH)2

crystallizes. At p equals 7, Kupfferite disappears, and 100% pure Grunerite (Gr) crystallizes with chemical formula of
Fe7Si8O22(OH)2

3.5.2 Mathematical Expression for Mafic Mica Series: 6 0[ ]( ) 2p p mZ  ∝

The crystal of amphibole interacts with the magma, so that the Si4O11(OH) of amphibole links to cation is being
hydrolyzed in the presence of excess water in the magma as shown in equation below

Si4O11(OH)(aq) + 0H(aq)⟶Si4O10(OH)2(aq)

0( ) 2aZ = Si4O20(OH)4

6
0

P

n r

 
 
 

 [Mg + iFe]6 Si4O20(OH)4 = 1 Mg6 Si4O20(OH)4 + 6i[Mg5Fe1]Si4O20(OH)4 +

15 Mg4Fe2 Si4O20(OH)4 + 20i Mg3Fe3 Si4O20(OH)4 + 15 Mg2Fe4 Si4O20(OH)4 + 6i Mg1Fe5 Si4O20(OH)4 +
1[Fe6]Si4O20(OH)4

Mafic Mica = Phlogopite + i[Magnesio-biotite]+ Biotite +i[Ferro-biotite]+ Lepidomelane

[ 6β p p ] 0( ) 2mZ = [Mg6-pFep][Si8O20(OH)4]

According to Achuenu and others (2025), [Mg6-pFep][Si8O20(OH)4] is a biotite series, as p ranges from 0 to 6. At ‘p’
equals to zero, 100% of phlogopite (Ph) crystallizes, and at ‘p’ equals to 7, Phlogopite (Ph) disappears and 100% pure
Lepidomelane (Lp) crystallizes with a chemical formula of K2Fe6Al2Si6O20(OH)4.

3.5.3 Expected Mathematical Expression for Plagioclase Series: ϒm−pΧp Qx−yNy iW

( ) ( ) ( )( )x y m p i m p p x y y iX Q X Q      N W N W

Xm−pϒp Zi= Χ 1−pϒp 0( ) 2fZ

= Χ m−pϒp 0( ) 2fZ

0( ) 2fZ = SiO4

0( ) 2fZ = Si 4O8

ϒ−Position =ϒ+Χ

Χ m−pϒp 0( ) 2fZ = 1 4[ γ ][ ]p p y y iX Q  N W

For p = 1 and y =1

1 4 1 1 1 4 1 1[ γ ][ ] [ ][ ]p p y y i iX Q X Q   N W N W

1 4 1 3 1[ γ ][ ] [ ][ ]p p y y i iX Q Q  N W N W

1 4[ ] [ ] ( )] [ γ ][ ]m x y p x y p p y y iQ x Q X Q       N N N W

[ ] [ ] ( )]m x y p x yQ x Q    N N + is called “PLAGIOCLASE SERIES”
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[ ] [ ] ( )]m x y p x yQ x Q    N N = CaAl2Si2O8 + NaAlSi3O8

Given that;

1 2 2 8[ ]0  ( )aQ N Basic plagioclase f 

1 3 8[ ]0  ( )cX Q N Alkaline feldspar f

[β2](Z0 )o�=Basic mineral (βam)

[α2](Z0 )o�=Acidic mineral (αcm)

Therefore in Matrix representation we have;

a c

a a
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M M M
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 
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      
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1 2 2 81 2 2 8
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[ ]( )[ ]( ) pn oo
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ZZ M
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

    
     

    

NN

As, αβ 0

3.5.4 Set Notation

Set notation is a mathematical parameter used in this research to partition minor elements of small concentrations in
part per million (ppm), such as, transition elements, and Rare Real Earth Elements, according to their compatibility and
incompatibility in the magma. The compatibility and the incompatibility, of these minor elements depend on the ratio of
the concentration of minor elements in the solid (Cs) to the concentration of the minor elements in liquid in the magma
during crystallization. The ratio of the concentration of the concentration of minor elements in solid to that of the minor
elements in Liquid is constant(Kn). Therefore, this can be mathematically expressed as

Kn =Cs
CL

Where; Cs=concentration in solid

CL=Concentration in Liquit

Kn= Constant.

Therefore, if the ratio of the concentration of trace elements or REE in solid (Cs) to that of the liquid is greater one,
Kn>i, then the trace or REE is compatible, and can be partitioned into the solid phase. In this case, for compatible trace
or REE, kn such that;

1sC
CL



If the ratio of concentration of trace elements, transition or REE in solid (Cs) to that of the Liquid (CL) is less tahn one,
kn <1 then the minor elements is incompatible and can be partitioned along the liquid phase in this case, for
incompatible minor elements, Kn <1, sucℎ tℎat

1sC
CL



It pertinent to note that, those minor elements that partitioned along the fluid phase, such as hydrous phase or gaseous
phase are mostly High Field strength Elements (HFSEs), because they have small ionic radius and large ionic charge.
They from the major gemstones and ore deposit of the world. They are also called small ion Lithophile elements.

The mathematical equations above can be represented using set Notation

[  miner al(1 m the rock)]+[ ]d d inz inK K M ]+[M Z

4. Results and Analyses of the Research.

4.1 Introduction

In a new model of crystallization in magma, Toramaru, A., and Kichise, T., [12], used a new numerical experiments to
study the influence of different cooling rates and classical nucleation theory parameters on the crystal number density
measured under constrained conditions in the laboratory experiments and identifies that, the nucleation rate as the main
parameter that controls the formation of crystal. In this condition it is interesting that the crystal growth rate is inversely
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proportional to the time, even if the diffusion limited growth is inversely proportional to the square root of time. In
other words, the nucleation process is controlled by an interplay between decompression and diffusion rates.

Andrew, B.J., and Befuse, K, S, [13], developed a numerical model which is supersaturation nucleation and growth of
plagioclase that predicts the nucleation and growth of plagioclase crystals in a decompressing magma as a function of
time and that growth rates are used to grow the existing crystals, where nucleation adds new crystals.

Supersaturation is the driving force of the crystallization, the rate of nucleation and growth is driven by the existing
supersaturation in the solution. Depending upon the conditions, either the nucleation or growth may be predominant
over the other and as a result, crystals with different sizes and shapes are obtained. Once the supersaturation is
exhausted, the solid-liquid system reaches equilibrium and the crystallization is complete, unless the operating
conditions are modified from equilibrium so as to supersaturate the solution again. The crystal growth is the subsequent
growth of nuclei that succeed in achieving the critical cluster size as shown Figure 5. Nucleation and growth continue to
occur simultaneously while the supersaturation exists

Under electrolytic condition with respect to thermodynamic change, there are two principal parameters in which
crystals are formed from the electrolytic melt W , and the formation of these two principal parameters depend on two
principal factors controlling the growth of the crystal and these principal factors are the;

1. size of growing crystal
2. equilibrium temperature.

The point at which lattice of growing crystal Z0, remains at equilibrium with the melt W , without any external
constraints is called “Critical Point of the Growing Crystal, Z0

If the critical point of the growing crystal in the complex plane of magma W , ABCD, has been established during the
growth of crystals, considering the size and the equilibrium temperature of the growing crystal, then crystals would
form and remain stable when the equilibrium is above the critical point between the melt W , and the crystal Z, but
when the equilibrium is below the critical point between the crystal Z, and the melt W , under thermodynamic change,
then the crystal Z, would be unstable and resolve back to the melt M .

For ions or atoms to enter into the lattice of forming crystal, the following rules by Wood (2003) must be satisfied

1. When various ions in the Recharge magma M are competing for space in the lattice of a growing crystal, the ions
with the smallest sizes would eventually enter into the lattice of the growing crystal Z0.
2. When various ions in the recharged magma M with different sizes and similar charge are competing for substitution
in already formed crystal Z, then the ion with the closest radius ratio to the nucleus of the crystal would go into
substitution provided that the difference between the size of the ions involve in the substitution is not differ by 15% and
the concentration of the ions in the melt is saturated enough to enter into substitution, otherwise ions of higher
concentration in the melt could go into substitution.

The probability of certain atoms or ions to enter into the lattice of growing crystal and a formed crystal Z, depends on
the size, charge and the electronegativity of the atoms in the periodic table as shown in Table 1 and Figure 1 below;

Table 1. Showing the Relative bonding, Ionic radius, Ionic charge, Ionization and Electronegativity of elements

Element Electronegetivity Ionization
Energy

Ionic
radius

Ionic
Charge

Total Relative
Bonding

Sodium 0.90 5.133 0.97 +1 100
Potassium 0.80 4.339 1.33 +1 90
Magnesium 1.20 14.970 0.66 +2 202

Calcium 1.0 11.820 0.99 +2 200
Aluminium 1.50 28.31 0.51 +3 300
Cromium 1.50/1.40 15.700 0.63 +3 321

Manganese 1.60 32.100 0.80 +2 174
Iron 1.65 16.240 0.644 +2 174
Iron 1.80 0.74 +3

Nickel 1.8/1.7 18.130 0.69 +2 1.97
Silicon 1.80 44.950 0.42 +4 380
Cobalt 1.80/1.70 17.300 +2 183

Chlorine 3.0 1.81 -1
Fluorine 4.0 1.33 -1

Oxygen 3.50 -2 384
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Figure 1. Nucleation of Atoms with Respect to sizes and charges in the magma W

The two principal parameters in which crystals are formed from Electrolytic magma W are;

1: Lattice of ‘Growing ‘crystal (Z0).

Lattice of a growing crystal is the critical point in the electrolytic melt W , in which the size of the growing of the
crystal is at equilibrium with the equilibrium temperature, such that any infinitesimal change in temperature would
cause the growing crystal to

I. be stable, when the critical point is above equilibrium temperature.
II. resolve back to the recharged melt, when the critical point is below equilibrium temperature

2: Lattice of ‘formed’ crystal (Z).

This is the point in the recharged melt W , in which the size of the crystal formed is above the equilibrium temperature
and at this point Gibbs free energy is attained, such that any infinitesimal change in temperature would not cause the
formed crystal to resolve back to the recharged melt, therefore it requires a great amount of heat energy to break such
bond between the atoms holding each other in the formed crystal.

With the heterogeneous nucleation, new minerals nucleate by taking advantage of the structure of an existing mineral.
Some of the energetic problems associated with homogeneous nucleation are avoided. If an existing mineral has a
surface or structure that is similar to a new mineral, the existing mineral can serve as the nucleus for growth. The need
to form embryos is largely eliminated. Once nuclei are stable, growth must progress by adding atoms/ions to the surface
of the crystal. This faces kinetic problems similar to nucleation.

Under thermodynamic change and electrolytic condition, the formed crystal Z1, in the melt W , becomes unstable and
spontaneous. At this point, equilibrium between the melt W and the formed crystal Z, is below the critical point with
higher entropy change ( s > 0) and lower Gibbs free energy ( G < 0) of the system containing the crystal Z1, and in
this spontaneous process, crystal begins to change from one form to the other by replacement of atoms of similar size
and charge until equilibrium is reached and crystal Z2, is formed. When equilibrium is above the critical point with
lower entropy ( s < 0) change and higher Gibbs free energy ( G > 0), provided that there is no change in
thermodynamic, and if equilibrium is prevailed at this point, then crystal Z2 formed, would be stable with the melt W
When atoms of similar size and charge substitute themselves in the lattice of formed crystal Z1 under spontaneous
process, to form another crystal Z2 of the same structure, it is called Isomorphous substitution reaction.

1. When atoms of different sizes and the same charge are competing for substitution, according to Wood in the lattice of
a formed crystal, Z, the one with closest radius ratio to the atom or ion in the site would eventually go into substitution
in preference to the one lower or high in radius provided that, the difference in their radius is not differed by 15% and if
the concentration of the substituting crystal is saturated enough in the magma containing the crystal.
2. When atoms of different charges and similar size are competing in the lattice of a formed crystal, according Wood,
the one with closest charge to the atoms in the lattice would preferentially go into substitution given that concentration
is saturated enough in the melt containing the crystal.
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4.1.1 Strength of Magma ( η ) under Thermodynamic Condition.

Under electrolytic condition, at a specified temperature, pressure and concentration, the strength of magma ( η ) is the
ratio of atomic nucleation of anion or radical Z0, to that of the closest cation X+ in the electrolytic magma, W . In this
case the closest cation is the one in which its electronegative is close to the anion in question in preference to other
cations in the electrolytic magma, W .

Therefore;

η =
Z0
X+ (ionic species)

4.1.2 Stability of Minerals in an Electrolytic Magma

The stability of crystals are defined according to the characteristics roots of the equations (Adams, and Bashforth). The
conditions of stability of minerals in rock during crystallization According to Adams and Bash forth include the
following:

1. Methods that satisfy the root condition and have Z = 1 or 2 as the only root of the characteristics equation of
magnitude one or more are called strongly stable.

2. Methods that satisfy the root condition and have more than one distinct root with magnitude one or more are called
weakly stable.

3. Methods that do not satisfy the root condition are called unstable.

Considered the conditions for stability mentioned above, the algebraic sum of the constituent elements in each mineral
is equal to zero with respect to their distinct characteristics roots, and stability depends on the Gibbs free energy of the
mineral.

Therefore crystals are strongly stable but their Gibbs free energy is a function of the available cation at that time -during
crystallization. This means that Gibbs energy determines the stability of the minerals when temperature drops further.
This implies that minerals rich in magnesium are strongly stable because it has one root that is greater one, but it is
metastable, because minerals rich in magnesium are not in their minimum Gibbs energy state. Those minerals rich in
ion are strongly stable, and are in the minimum Gibbs free energy state and has the characteristic root not greater than
one. The equal proportion of these two elements in minerals means that they are weakly stable (metastable), because it
contains characteristics two roots.

According adams- Bash and adams –Moulton, a method is convergent if the solution to difference equation approaches
to the solution of differential equation as the step size approaches zero as given as;

Lim h⟶0<1<N [wi –y(ti)] = 0

A stable method is the one whose result depends continuously on the initial data.

Given that n 0β (Z )=O is at stable equilibrium with the silicate melt, but not at its minimum Gibbs free energy which is
numerically equals to zero, G O  but for a free minimum Gibbs energy, 0( )p Z O  at G O  is at equilibrium
with the silicate the silicate melt. Therefore,

 βn (Z0 ), a metastable equilibrium, with ∆G=O

 αp (Z0 ) a stable equilibrium, with ∆G>O

This implies that,

1. Minerals rich in magnesium are strongly stable because it has one root that is greater than one, but it is metastable
because minerals rich in magnesium are not in their minimum Gibbs free energy state in the presence of free silica.
2. Minerals rich in iron are strongly stable and are in their minimum Gibbs free energy state in the presence of free
silica and has the characteristics one root greater than one.

4.2 Analysis of Results

The mathematical methods used to analyze these minerals in the rocks and classify them according to their genetic
origin include;

a. Matrix method

b. Set Notation

4.3 Application of Metrical Matrices to Rock Forming Minerals

The use of matrices to resolve some problems concerning chemical distribution and elemental substitution of chemical
elements in rocks becomes very important in this research.
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In mathematics, a matrix is a rectangular array of numbers, symbols or expressions, arranged in rows and columns,
these numbers are called the elements or entries of the matrix. Matrices have wide applications in engineering, physics,
economics, and statistics as well as in various branches of mathematics and even geology.

To resolve these problems using matrix method, minerals set in matrix to form rock, such minerals will form
simultaneously at the same temperature under isobaric condition and attain a particular Gibb’s energy to maintain
stability. For a heterogeneous rock to form, the rock classifiers, feldspars will form simultaneously with the mafic
minerals at an approximate temperature under isobaric condition.

Given that;

βaP=Basic Plagioclase

Basic Feldspar = Sequence and initial value

αcP=Acidic Plagioclase

Acidic Feldspar = Subsequence and modified value

βaM=Basic mafic

Basic mafic = Sequence and initial value

αcM=Acidic mafic

Acidic mafic = Subsequence and modified value and such that;

Basic Plagioclase+Basic mafic=Basic (1)
Basic mafic=basic olivine, basic pyoxene and opaque minerals

Basic Plagioclase=Basic Anortℎite, Basic Bytownite, basic labradiorite
Acidic Plagioclase+Acidic alkali=Felsic (2)

Acidic plagioclase=Oligoclase
Acidic alkali = albite

Acidic plagioclase+Acidic alkali=Felsic (3)
plagioclase=Oligoclase and andesine

Alkaline=Albite, ortℎoclase and microdine

Alkali+Acidic=Acidic (4)
Alkali=albite, ortℎoclase and microcline

Acidic=acidic quartz, acidic olivine and acidic pyroxene

Acidic+Basic=Mafic (5)
Then,

a cP P   F (6)

βaM+αcM=ℳ (7)

If [ ] [ ] ( )m x y p x yQ x Q Felsic     N N

0[( ) ( ) ]n p Z Mafic  

Such that;

[ [ ] ( )] 0m x y p x yQ x Q     N N (8)

0[( ) ( ) ] 0n p Z   (9)

As 0 

Using factor theorem, to evaluate the simultaneous equations above. In algebra, the factor theorem is a theorem linking
factors and zeros of polynomial. It is a special case of the polynomial remainder theorem.

The factor theorem states that a polynomial has a factor, if and only if (i.e.; is a root). Then to resolve the simultaneous
equations (8) and (9) above, then range from 0 to ∞ wℎere p:y ≤x, m

For feldspars;

Given that;

ϒm [Q+N]x+y + [x]p(Q+N)]x+y= Χ 1−pϒp [Q4−yNy] Wi

[Υ1−p Xp] Q4−yNy 08=0,
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At p =0 and y = 1

Then Z, m,p : (x,y) −position

[m, p]- Position = [1, 0]

[x, y]- Position = [4, 1]

1 4 8 1 3 1[ ]0 ( )p p y yX Q Q N      N

At p =1 and y = 2

Then Z, m,p : (x,y) −position

[m, p]- Position = [0, 1]

[x, y]- Position = [4, 2]

[Υ1−p Xp] Q4−yNy 08 = 1X ( 2Q N2)

ϒm + [x]p(Q+N)]x+y= ϒ1(Q2 N2)+ X1(Q3N1) 08

1 2 2 1 3 8[ ]0 [1,0 2,2] [0,1 3,1]Q X Q     N N (10)

5 3 16[( ) ]0 [(1,1) (5,3)]16X Q   N (11)
For Mafic

Given tℎat;

( β + )n+p Z0 = [β2−pαp]Z0

as n=0⟶2, and p≤n

∴[β2−pαp]Z0=0 (12)
Using factor theorem;

For n = 2

(2- p)p = 0

P = 0

Then Z, n,p −position

[n: p]- Position = [2, 0]

[β2−pαp]Z0 =[β2 ]Z0

2−p=0

P = 2

n = 0

Then Z, n,p −position

[n: p]- Position = [0, 2]

[β2−pαp]Z0 = [α2 ]Z0

∴ 2 0 2 0[ ] , [2,0] [ ]p p Z at Z    (13)
[β2−pαp]Z, at 0, 2 =[β2]Z0 (14)
put [β2]Z0 and α2 Z0 in equation

[β2−pαp]Z0 = 2, 0 + 0, 2

β2 + α2 Z0 = 2, 0 + 0, 2 (15)
β=basic, so tℎat β2 Z0 is basic mineral

α=acidic, so tℎat [α2]Zo is acidic mineral

[β+α ]= 2, 2 (16)

Using Cauchy’s definition of sequence;

ℰ> 0 and δ <ℰ
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For, δ = 1 for unit sphere, therefore, ℰ = 3.142.

η z = z (17)
ℰ = 3.142

δ = 1unit

η z = ℰz-1 (18)
Sequentially, a sphere ℰ with a unit length δ can be constructed using Cauchy definition of as shown in Tables 2 and 3
below;

Table 2. Sequence and subsequence of a sphere, ℰ =π

Number of times Sequence ℰ = π Subsequence η Difference
ℰz η z = ℰz -1 ℰz - η z

1 [β2]Z0 [α1]Z0 1, 0
2 [β2−pαp]Z 1, 2
3 [α2]Z0 2, 0

Total [α2]Z0 0, 2

Table 3. Sequence and subsequence of a sphere, ℰ =π

Number of times Sequence ℰ = n Subsequence η Difference
ℰz η z = ℰz -1 ℰz - η z

1 Basic Acidic
2 Intermediate intermediate
3 Acidic Basic

Total Acidic

4.3.1 Metrical Matrix for Mafic Olivine Minerals and Feldspars: ( 2β p p ) 0( )oZ

Olivine and feldspar in this category of Matrix series are called primary olivine and feldspar in the mafic and felsic
magma complexes because they are the first derivatives of olivine and feldspar from the magma W and these require
simple substitutions of ions of the same charge and similar size according to Goldschmidt.

Then set equations (10) and (15) above, in matrices to form equations (19) below.

ϒ1 Q2 N2 08+X1(Q3 N)08= (1, 0 , 2, 0) + (0, 1 , 3, 1)

2 0 2 0[ ]( ) [ ]( ) [2,0] [0,2]o oZ Z   

ϒ1 Q2 N2 08

β2 (Z0 )o�

,
+
,

X1 Q3 N 08

[ α2](Z0 )o�
=

0, 1 , 2, 2

2, 0

,
+
,

1, 0 , 3, 1

0, 2

ϒ1 Q2 N2 08

β2 (Z0 )o�
+

X1 Q3 N 08

[α2
](Z0 )o�

=
0, 1 , 2, 2

2, 0
+

1, 0 , 3, 1

0, 2
(19)

[(ϒ1+X1)Q5 N3]016

β2+α 2
(Z0 )o�

= 1, 1 , 5, 3
2, 2 (20)

0, 1 , 2, 2

2, 0
+

1, 0 , 3, 1

0, 2
=

1, 1 , 5, 3

2 , [2]
(21)

1 2 2 8[ ]0   ( )aQ N Basic plagioclase f 

1 3 8[ ]0   ( )cX Q N Alkaline feldspar f

[β2](Z0 )o�=Basic mineral (βam)

[α2](Z0 )o�=Acidic mineral (αcm)
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a a

a a

f f f
m m m

 
 
     

      
    

1 2 2 8 1 2 2 8

2 0 2 0

[ ]0 [ ]0
[ ]( ) [ ]( )o o

Q Q f
Z Z m

 
 

     
      

    

N N
(22)

1 2 2 8 1 3 8 1 1 5 3 16

2 4 2 4 4

[ ]0 [ ]0 ( )[ ]0
[ ] [ ] [ ]
Ca Al Si Na AlSi Ca Na Q
Mg SiO Fe SiO MgFe SiO

     
      

     

N
(23)

Anortℎite
Forsterite + Albite

Fayalite = Anortℎoclase
Olivine

Basalt + Rℎyolite = [ Andesite]

[basic basalt]+[acidic Rhyolite]=[Intermediate](24)

if pl>α, tℎen tℎen tℎe intermediate rock is Andesite

[Basalt]+[Dacite] = Andesite(25)

if pl <α, tℎen tℎe intermediate rock is Tracℎyte

Basalt + Ryolite =Tracℎyte (26)

if pl=α , tℎen tℎe Intermediate rock is tℎe Hybrid mogonite

[Basalt]+[Rhyolite]=hybrid Monzonite(27)

Given that;

ℰ = [Mg+iFe]2 Si O4

ℰz = Mg2 Si O4 ,

η z = Fe2 Si O4

Adam-Bashforth method of difference equation to the solution of differential equation as the size ( δ ) of growing
embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s sequence and
subsequence are used to analyze olivine group, using the two end members of Olivine series as shown Table 4;

2 4Mg SiO = Initial value and the sequence

Fe2 Si O4 , = Modified value and the subsequences

Therefore, η represents the roots of the equations β2−p∝p Z0 δ� for Olivine minerals and 1 4[ ][ ]p p y y iX Q  N W for
Feldspar minerals

Therefore;

η = 2 for Olivine and η = 2 for Feldspar

Then;

λ2 = (2, 2) for Olivine and λ2 = (1, 1) for Feldspar

Table 4. The two End members of Olivine group and Feldspar group using Adams-Bashfort and Cauchy sequence

Adams-Bashfort Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula Mg2SiO4
Ca1[Al2 Si2]08

Fe2SiO4
Na1[AlSi3]08

2, 2 0.2, 1

Geologic name Forsterite Anorthote Fayalite Albite 2, 2 0.2, 1

Cauchy’s sequence Sequence Sequence subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutral
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Classification of mafic olivine

Olivine class = 1[basic ‘Olivine’] + [intermediate ‘Olivine’] + i[acidic Olivine].
Olivine Minerals = basic ‘Forsterite ‘+ i[intermediate ‘Olivine ‘] + acidic ‘Fayalite’
Olivine rocks = (olivine’Basalt’)+(oline’Granite’)+i(olivine’Andesite’)

For simultaneous reaction process in the magma, Mg2-pFepSiO4 and [Ca1-pNap][Si4-yAly] O8 are the ‘Olivine series’ and
Feldspar series formulae that can be used to calculate all olivine and feldspar minerals from the melt W , where p is an
integer and ranges from 0 to 2 in olivine crystals and 0 to 1 in feldspar crystals. At p equals to zero, 100% Forsterite(Fo)
and anorthite(An) will crystallize simultaneously from the melt with chemical formulae of Mg2SiO4 and Ca1[Al2Si2]08
and ca1[Al2Si2]O8 they are the sequences and initial values during crystallization of olivine and feldspar from the melt.
Therefore, at p equals to 2 for olivine and 1 for feldspar, Forsterite (fo) and Anorthite(An) disappear and 100% of pure
Fayalite (Fa) and Albite(Ab) will crystallize simultaneously with chemical formulae of Fe2SiO4(s) and Na1[AlSi3]O8 and
they are the subsequences and modified values during crystallization of olivine and feldspar from the melt. Therefore
forsterite, anorthite, fayalite, and albite are the end members of olivine and feldspar in the mafic olivine and feldspar
series and they set in matrices to form rocks of equivalent compositions.

4.3.2 Metrical Matrix for Mafic Pyroxene and Feldspar: 2 0[ ]( )p p pZ 

Pyroxene and feldspar in this category of Matrix series are called primary Pyroxene and feldspar in the mafic and felsic
magma complexes because they are the first derivatives of Pyroxene and feldspar from the magma W and these
require simple substitutions of ions of the same charge and similar size according to Goldschmidt.

At about 20000C and 10000C of the melt W , the first formed crystal of smaller independent tetrahedron unit of
forsterite, (Mg2SiO4) that is, the “olivine type mineral” in which its (SiO4)-4 independent tetrahedron unit can be linked
by the silica tetrahedron (SiO4)-4 by sharing the two corners of each tetrahedron with oxygen atoms in the silica rich
melt W and then polymerized to form, new crystal phase of much larger regular structural tetrahedron unit of
Enstatite(Mg2Si2O6) called .a chain silicate usually single chain of an “indefinite structure”, which is a “pyroxene
type mineral and simultaneously Bytownite type of feldspar is formed.

Then set equations (10) and (15) in matrices form as shown in equations (28) below.

Ca4Na1[Al2 Si2]08

[Mg2] Si2O6

+
Na1[AlSi3]08

[Fe2] Si2O6

=
(Ca1Na1)Al3 Si5]016

[MgFe ] Si2O6

(28)

Bytownite
Enstatite + Albite

Ferrosilite = Anortℎoclase
Pyroxene

Basalt + Rℎyolite = [ An desite]

[Basalt]+[Rhyolite]=[An desite]

[basic basalt]+[acidic Rhyolite]=[Intermediate] (29)

if pl>α, tℎen tℎen tℎe intermediate rock is Andesite

[Basalt]+[Decite]=An desite (30)

if pl <α, tℎen tℎe intermediate rock is Tracℎyte

Basalt + Ryolite =Tracℎyte (31)

if pl=α , tℎen tℎe Intermediate rock is tℎe Hybrid mogonite

[Basalt]+[Rhyolite]=hybrid Monzonite (32)

Given that;

2 2 6[ ]Mg Fe Si O  

2 2 6z Mg Si O 

2 2 6z Fe Si O 

Adam-Bashforth (1883) method of difference equation to the solution of differential equation as the size ( δ ) of
growing embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s
sequence and subsequence are used to analyze the Pyroxene group, using the two end members of Pyroxene series as
shown Table 5, below.

Mg2 Si2 O6 = Initial value and the sequence
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Fe2 Si2 O6 = Modified value and the subsequences

Therefore, η represents the roots of the equation 2
0[ ]( )p ps Z  ∝ for Pyroxene minerals and 1 4[ ][ ]p p y y iX Q  N W

for Feldspar minerals

Therefore;

η = 2 for Pyroxene and η = 0.2 for Feldspar

Then;

λ2 = (2, 2) for Pyroxene and λ2 = (0.2, 1) for Feldspars

Table 5. The two End members of Pyroxene group and Feldspar group using Adams-Bashfort (1883) and Cauchy sequence

Adams-Bashfort (1883) Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula Mg2Si2O6
Ca4Na1[Al2 Si2]08

Fe2Si2O6
Na1[AlSi3]08

2, 2 0.4, 1

Geologic name Enstatite Bytownite Ferrosilite Albite 2, 2 0.4, 1

Cauchy’s sequence Sequence Sequence Subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutral

Classification of pyroxene under control thermodynamic condition

Pyroxene Class = 1[basic Pyroxene] + 2[intermediate Pyroxene] + i[acidic Pyroxene].
Pyroxene Minerals = basic ‘Enstatite ‘+ i[intermedite ‘Hypersthene’] + acidic ‘Ferrosilite’ .
Pyroxene rocks = (pyroxene’Basalt’)+(pyroxene’Granite’)+i[(pyroxene’Andesite’)]

For simultaneous reaction process in the magma, Mg2-pFepSi2O6 and [Ca1-pNap][Si4-yAly]O8 are the ‘Pyroxene series’
and Feldspar series formulae that can be used to calculate all Pyroxene and feldspar minerals from the melt W , where
p is an integer and ranges from 0 to 2 in olivine and 0 to 1 in feldspar crystal. At pequals to zero for olivine crystal,
100% Enstatite(En100) and at p equals to 0.2 for feldspar crystal, 80% anorthite(An80) called Bytownite will crystallize
simultaneously from the melt with chemical formulae of Mg2Si2O6 and Ca4Na1[Al2Si2]O8 and they are the sequences
and initial values during crystallization of olivine and feldspar from the melt. Therefore, at p equals to 2 for olivine and
1 for feldspar, Enstatite(En) and Bytownite(By) disappear and 100% of pure Ferrosilite (Fe) and Albite(Ab) will
crystallize simultaneously with chemical formulae of Fe2Si2O6 and Na1[AlSi3]O8 and they are the subsequences and
modified values during crystallization of pyroxene and feldspar from the melt. Therefore Enstatite, Bytownite,
ferrosilite, and albite are the end members of olivine and feldspar in the mafic pyroxene and feldspar series and they set
in matrices to form rocks of equivalent compositions.

Therefore olivine polymerizes to pyroxene under thermodynamic control as shown below;

As,
0 0( ) ( )

               1000
1890

o pZ Z

Lim c
c

 




 Also more basic olivine ( βn ), changes to more acidic olivine ( p ), by substitution reaction as shown below;

0 0 0( ) ( ) )

       
p p pZ Z Z

As
Lim Lim

 W ∝

 Polymerization and isomorphous reaction of minerals in the magma under thermodynamic control as shown below;

W z
polymerization
� �������
polymerization
� ������� β(z)0

polymerization
� ������� β(z)p∆G=0

Lim

∆G<0 ∝(z)0
polymerization
� ������� ∝ z 0 ∆G>0

So
lid

So
lid
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This means that olivine complete its crystallization when iron rich in olivine is precipitated and crystallized as fayalite
and its Gibbs free energy is minimum at that point.

All the pyroxenes crystallized in this case are in orthorhombic system. Pyroxene considered are;

1. Mg2S2O6

2. 2Mg FeS2O6

3. Fe2S2O6

4. [Mg>Fe]Si2O6

5. [Mg <Fe]Si2O6

Therefore with ( 2β p p ) (Z0 )p� = Mg2-pFepSi2O6, Enstatite and Ferrosilite are formulated with respect to Bowen’s and
Goldschmidt concepts and with these formulations Bowen’s and Goldschmidt concepts are mathematically connected.

4.3.3 Metrical Matrix for Mafic Amphibole and Feldspar

Magma with water content at moderate to low temperature, silica rich and higher viscosity. Water content causes partial
pressure to the magma at moderate to low temperature. This means that pressure affects the crystallization either delay
or hasten of mineral from the melt.

Amphibole and feldspar in this category of Matrix series are called primary Amphibole and feldspar in the mafic and
felsic magma complexes because they are the first derivatives of Amphibole and Feldspar from the magma W and
these require simple substitutions of ions of the same charge and similar size according to Goldschmidt (1937).

In amphiboles, the “pyroxene type mineral” in which its (Si2O6)-4 chain tetrahedron unit can be linked by the silica
tetrahedron (Si2O6)-4 by sharing the corners of adjacent tetrahedron with oxygen atoms in the silica rich melt W and
then polymerized to form, much larger regular structural tetrahedron unit of Kupfferite(Mg7Si8O22(OH )2, a two parallel
chain called a double chain silicate of an “indefinite structure”, which is a “amphibole type mineral” that has
different form (structure) and similar chemistry (composition) with the second formed crystal of enstatite and
simultaneously Labradorite type of feldspar is formed along with the Kupfferite amphibole type mineral.

Given tℎat;

η(β+α) Z0 = [βη−pαp]Z0

η = 7

( β + )7 Z0 = [β7−pαp]Z0

7 7 0[ ) [7,0] [0,7]Z    (33)

Then set equations (10) and (33) in matrices form as shown in equations (37) below.

Si2O6(s) + Si2O6(s) Si4O12(s) (34)

7 0 7 0[ ]( ) , [7,0] [ ]( )p p a aZ at Z    (35)

2 0 7 0[ ]( ) , [0,7] [ ]( )p p a aZ at Z    (36),

3 2 2 2 8 1 3 8 1 1 5 3 16

7 8 22 2 2 8 22 2 7 16 44 4

[ ]0 [ ]0 ( )[ ]0
[ ] ( ) [ ] ( ) [ ] ( )
Ca Na Al Si Na AlSi Ca Na Q
Mg Si O OH Fe Si O OH MgFe Si O OH

     
      

     

N
(37)

Labradorite Albite Anorthoclase
Kupfferite Grunerite Anthophyllite

     
      

     

[Basalt]+[Rhyolite]=[Andesite]

[basic basalt]+[acidic Rhyolite]=[Intermediate] (38)

if pl  , then then the intermedite rock is Andesite

[Basalt]+[Dacite] = Andesite(39)

if pl  , then then the intermedite rock is Trachyte

[Basalt]+[Rhyolite]=Trachyte(40)

if pl  , then then the intermedite rock is the Hybrid mogonite
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[Basalt]+[Rhyolite]=hybrid Monzonite (41)

Given that;

7 8 22 2[ ] ( )Mg Fe Si O OH  

7 8 22 2( )z Mg Si O OH 

7 8 22 2( )z Fe Si O OH 

Adam-Bashforth method of difference equation to the solution of differential equation as the size ( δ ) of growing
embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s sequence and
subsequence are used to analyze the Amphibole group, using the two end members of Amphibole series as shown Table
6, below.

7 8 22 2( )Mg Si O OH = Initial value and the sequence

7 8 22 2( )Fe Si O OH = Modified value and the subsequence

Therefore, η represents the roots of the equation 7
0[ ]( )p p Z  ∝ for Amphibole minerals and 1 4[ ][ ]p p y y iX Q  N W

for Feldspar minerals

Therefore;

η = 7 for Amphibole and η = 0.4 for Feldspar

Then;

Λ7 = (7, 7) for Amphibole and λ1 = (0.4, 1) for Feldspars

Table 6. The two End members of Amphibole group and Feldspar group using Adams-Bashfort (1883) and Cauchy sequence

Adams-Bashfort (1883) Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula Mg7Si8O22(OH)2
Ca3Na2[Al2 Si2]08 Fe7

Si8O22(OH)2

Na1[AlSi3]08
2, 2 0.6, 1

Geologic name Kupfferite Labradorite Grunerite Albite 2, 2 0.6, 1

Cauchy’s sequence Sequence Sequence subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutral

Classification of amphibole under thermodynamic condition

Amphibole class = 1[basic Amphibole] + [mafic Amphibole] + i[acidic Amphibole].
Amphibole Minerals = basic ‘Kupfferite ‘ + basic ‘Anthophyllite+ i[intermedite ‘Anthophyllite’-‘Cummingtonite’]

+ acidic’ Cummingtonite’ + acidic ‘Grunerite’
Amphibole rocks = +(amphibole’Basalt’)+(amphibole’Andesite’)+i(amphibole’Granite’)]

For simultaneous reaction process in the magma, [(Mg7-pFep)(Si8O22(OH)2] and Ca 1−pNap [Si4−yAly] O8 are the
‘Amphibole series’ and Feldspar series formulae that can be used to calculate all amphibole and feldspar minerals
from the melt W , where p is an integer and ranges from 0 to 7 in amphibole and 0 to 1 in feldspar crystal. At p equals
to zero for amphibole crystal, 100% Kupfferite(Kup100) and at p equals to 0.4 for feldspar crystal, 60% anorthite(An60)
called Labradorite will crystallize simultaneously from the melt with chemical formulae of Mg2SiO4 and
Ca3Na2[Al2Si2]O8 and they are the sequences and initial values during crystallization of olivine and feldspar from the
melt. Therefore, at p equals to 2 for amphibole and 1 for feldspar, Kupfferite(Ku) and Labradorite(La) disappear and
100% of pure Grunerite (Gu) and Albite(Ab) will crystallize simultaneously with chemical formulae of Fe2 7β p SiO4(s)

and Na1[AlSi3]O8 and they are the subsequences and modified values during crystallization of olivine and feldspar
from the melt. Therefore Kupfferite, Labradorite, Grunerite, and albite are the end members of amphibole and feldspar
in the mafic amphibole and feldspar series and they set in matrices to form rocks of equivalent compositions.
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Therefore with ( p ) (Z0 )p� = [(Mg7-pFep)(Si8O22(OH)2], Kupfferite and Grunerite are formulated with respect to
Bowen’s and Goldschmidt concepts and with this formulation Bowen’s and Goldschmidt concepts are mathematically
connected. Therefore Kupfferite, Anthophyllite, Cummingtonite and Grunerite are the primary amphiboles in the mafic
amphibole series.

4.3.4 Metrical Matrix for Black Mica and Feldspar

Mica and feldspar in this category of Matrix series are called primary Mica and feldspar in the mafic and felsic magma
complexes because they are the first derivatives of Mica and Feldspar from the magma W and these require simple
substitutions of ions of the same charge and similar size according to Goldschmidt.

The crystal of amphibole interacts with the magma, so that the Si4O11(OH) of amphibole links to cation is being
hydrolyzed in the presence of excess water in the magma shown in equation (190) below.

Si4O11(OH)(aq) + 0H(aq)⟶Si4O10(OH)2(aq) (42)

In equation (42) above, one atom of oxygen in amphibole radical is being replaced by one atom of hydroxide atom in
Si4O11 (OH)-7 to form Si4O10(OH)2-6.

6 0 6 0[ ]( ) ,  [6,0] [ ]( )p p m mZ at Z   

2 0 6 0[ ]( )   [0,6] [ ]( )p p m mZ at Z   

2 3 2 2 8 1 3 8 1 1 3 5 16

6 8 20 4 2 8 22 4 7 16 44 4

[ ]0 [ ]0 [( )[ ]0
[ ] ( ) [ ] ( ) [ ] ( )
Ca Na Al Si Na AlSi Ca Na Al Si
Mg Si O OH Fe Si O OH MgFe Si O OH

     
      

     
(43)

log
Andesite Albite Anorthoclase
Ph opite Lepidomelane Bioyite
     

      
     

[Basalt]+[Rhyolite]=[Andesite]

[basic basalt]+[acidic Rhyolite]=[Intermediate] (44)

if pl  , then then the intermedite rock is Andesite

[Basalt]+[Dacite] = Andesite (45)

if pl  , then then the intermedite rock is Trachyte

[Basalt]+[Rhyolite]=Trachyte (46)

if pl  , then then the intermedite rock is the Hybrid mogonite

[Basalt]+[Rhyolite]=hybrid Monzonite (47)

6 8 20 4[ ] ( )Mg Fe Si O OH  

6 8 20 4( )z Mg Si O OH 

6 8 20 4( )z Fe Si O OH 

Adam-Bashforth (1883) method of difference equation to the solution of differential equation as the size ( δ ) of
growing embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s
sequence and subsequence are used to analyze the Mica group, using the two end members of Mica series as shown
Table 7, below

6 8 20 4( )Mg Si O OH = Initial value and the sequence

6 8 20 4( )Fe Si O OH = Modified value and the subsequence

Therefore, η represents the roots of the equation s β6−p∝p Z0 δ� for Mica minerals and 1 4[ ][ ]p p y y iX Q  N W for
Feldspar minerals

Therefore;

η = 6 for Mica and η = 0.6 for Feldspar

Then;

Λ7 = (6, 6) for Mica and λ1 = (0.6, 1) for Feldspars
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Table 7. The two End members of Mica group and Feldspar group using Adams-Bashfort (1883) and Cauchy sequence

Adams-Bashfort (1883) Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula Mg6Si8O20(OH)4
Ca2Na3[Al2 Si2]08 Fe6

Si8O20(OH)4

Na1[AlSi3]08
2, 2 0.6, 1

Geologic name Phlogopite Andesine Lepidomelane Albite 2, 2 0.6, 1

Cauchy’s sequence Sequence Sequence Subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutral

Classification of mafic mica under controlthermodynamic condition

Mica class = 1[basic Mica] + [intermediate Mica] + i[acidic Mica].
Mica Minerals = basic ‘Phlogopite ‘ + basic ‘biotite+ i[intermedite ‘Biotite’] + acidic’ Biotite + acidic

‘Lepidomelane’
Mica rocks = (mica’Basalt’)+(mica’Granite’)+i[(mica’Andesite’)]

For simultaneous reaction process in the magma, [(Mg6-pFep)(Si8O20(OH)4] and Ca 1−pNap [Si4−yAly] O8 are the
‘Mica series’ and Feldspar series formulae that can be used to calculate all Pyroxene and feldspar minerals from the
melt W , where p is an integer and ranges from 0 to 7 in olivine and 0 to 1 in feldspar crystal. At p equals to zero for
olivine crystal, 100% Enstatite(En100) and at p equals to 0.6 for feldspar crystal, 40% anorthite(An40) called Andesine
will crystallize simultaneously from the melt with chemical formulae of [(Mg6)(Si8O20(OH)4] and Ca2Na3[Al2Si2]O8
and they are the sequences and initial values during crystallization of olivine and feldspar from the melt. Therefore, at
p equals to 6 for amphibole and 1 for feldspar, Phlogopite(Ph) and Andesine(An) disappear and 100% of pure
Lepidomelane (Lp) and Albite(Ab) will crystallize simultaneously with chemical formulae of [(Fe6)(Si8O20(OH)4] and
Na1[AlSi3]O8 and they are the subsequences and modified values during crystallization of olivine and feldspar from
the melt. Therefore phlogopite, Andesine, Lepidomelane, and albite are the end members of amphibole and feldspar in
the mafic amphibole and feldspar series and they set in matrices to form rocks of equivalent compositions.

Therefore with 6 0( )p p mZ  = [(Mg6-pFep)(Si8O22(OH)2], , Phlogopite and Lepidomelane were formulated with respect
to Bowen’s and Goldschmidt concepts and with this formulation Bowen’s and Goldschmidt concepts are
mathematically connected.

Therefore Phlogopite, Biotite and Lepidomelane are the primary mica in the mafic mica series.

4.3.5 Metrical Matrix for white Mica and Feldspar

Mica and feldspar in this category of Matrix series are called secondary Mica and feldspar in the mafic and felsic
magma complexes because they are the third derivatives of Mica and Feldspar from the magma W and these require
substitutions of ions of different charges and different sizes provided there is couple substitution in another lattice for
electrical neutrality according to Goldschmidt norm.

For complex reactions

Where, Si8O20 OH 4 is the Mica radical group for all corresponding mica series in the light silicate complex?
Ca1Na4[Al2 Si2]08

Na [Al2Si4O10(OH)2 ]
+

K1[AlSi3]08

K [Al2Si4O10(OH)2 ]
=

[(K1Na1)(Si6 Al2)]016

(Na K)[Al4(Al2Si6)O20(OH)4 ]
(48)

Oligoclase
Paragonite + Albite

Muscovite = Pertℎite
wℎite Mica

sodic−Granite + Potassic−Granite = [leuco− Granite]

2 2 8[ ]Ca Na Al Si O  

2 4 10 2[ ]( )z Na Al Si O OH 

2 4 10 2[ ]( )z K Al Si O OH 

Smart Materials and Engineering Applications https://smea.cultechpub.com/index.php/smea

47



Adam-Bashforth (1883) method of difference equation to the solution of differential equation as the size ( δ ) of
growing embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s
sequence and subsequence are used to analyze the Plagioclase feldspar group, using the two end members of Feldspar
series as shown Table 8, below.

4 8 20 4[ ]( )Na Al Si O OH = Initial value and the sequence

4 8 20 4[ ]( )K Al Si O OH = Modified value and the subsequence

Therefore, η represents the roots of the equation 2
0[ ]( )p ps Z  ∝ for Mica minerals and 1 4[ ][ ]p p y y iX Q  N W for

Feldspar minerals

Therefore;

η = 4 for Mica and η = 0.8 for Feldspar

Then;

Λ7 = (4, 4) for Amphibole and λ1 = (0.8, 1) for Feldspars

Table 8. The two End members of white Mica group and Feldspar group using Adams-Bashfort (1883) and Cauchy sequence

Adams-Bashfort (1883) Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula Na [Al2Si4O10 OH 2 ]
Ca1Na4[Al2 Si2]08 K [Al2Si4O10(OH)2

Na1[AlSi3]08
1,1 0.8, 1

Geologic name Muscovite Oligoclase Pargonite Albite 1, 1 0.8, 1

Cauchy’s sequence Sequence Sequence Subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutral

Paragonite and Muscovite are secondary and corresponding micas in the white mica complex. Therefore
Na Al4Si8O20(OH)4 −K [Al4Si8O20(OH)4 ] is tℎe alkaline series rock type of silicate. The presence of certain
percentage of this alkaline series in mica rock type gives the name of the rock type e.g alkaline mica Rhyolite and these
were formulated with respect to Bowen’s and Goldschmidt concepts and with these formulations Bowen’s and
Goldschmidt concepts are mathematically connected.

For simultaneous reaction process in the magma, [(Fe4-pAlp)(Si8O20(OH)4] and Ca 1−pNap [Si4−yAly] O8are the white
‘Mica series’ and Feldspar series formulae that can be used to calculate all Pyroxene and feldspar minerals from the
melt W , where p is an integer and ranges from 0 to 7 in olivine and 0 to 1 in feldspar crystal. At p equals to zero for
olivine crystal, 100% Enstatite(En100) and at p equals to 0.8 for feldspar crystal, 20% anorthite(An20) called Andesine
will crystallize simultaneously from the melt with chemical formulae of [Na(Al4)(Si8O20(OH)4] and Ca1Na4[Al2Si2]O8
and they are the sequences and initial values during crystallization of olivine and feldspar from the melt. Therefore, at
p equals to 6 for amphibole and 1 for feldspar, Paragonite(Pa) and Andesine(An) disappear and 100% of pure
Muscovite (Mu) and Albite(Ab) will crystallize simultaneously with chemical formulae of [K(Al4)(Si8O20(OH)4] and
Na1[AlSi3]O8 and they are the subsequences and modified values during crystallization of olivine and feldspar from
the melt. Therefore Paragonite, Oligoclase, Muscovite, and albite are the end members of amphibole and feldspar in the
mafic amphibole and feldspar series and they set in matrices to form rocks of equivalent compositions.

Therefore with 4 0( 0( )p p mZ  = [(Fe4-pAlp)(Si8O20(OH)4], , Paragonite and Muscovite were formulated with respect to
Bowen’s and Goldschmidt concepts and with this formulation Bowen’s and Goldschmidt concepts are mathematically
connected.

4.3.6 Metrical Matrix for Alkaline Minerals

Feldspars in this category of Matrix series are called primary feldspar in the felsic magma complexes because they are
the first derivatives of Feldspar from the magma W and this requires substitution of ions of different charges and
different sizes provided there is couple substitution in another lattice for electrical neutrality .according to Goldschmidt.
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If alkali earth metal is depleted from the melt 0( ),  Z thenW

[ ] [ ] ( ) ( )m x y p x y x y iQ x Q Q       N N N W

 0,  lim   [ ]m x y y iAs Y Q  N W

 ( )p x y i p ix y
X Q X Q 

  N W N W

Such that;

0p x y y iX Q    N W (49)

As the alkali earth metals are depleted from the melt, 0( )ZW more alkali metals of the same size and charge are being
precipitated from the remaining melt, 0( )ZW so that they can be interchangeable during solid solution. At a high
temperature, alkali metals of the same charge can coexist together at the ratio of at least (90:10) or (64:36). The ratio in
which they coexist is called Anorthoclase in felsic silicate rock and is shown in equation (49) above, below.

At a low temperature, the alkali metals exist in separate phases, and they become mirror image of the other, therefore
one exceeds one another.

Therefore, [ ] [ ([ )p x y y j p x y y jX Q X Q N W K N W

* ( ([ ) ] 0p x y y jX Q  K N W

* *[ ] [ ] 0p x y y jX Q  K N W

*[ ] [ ] [ ] [ ]y x y y j y c x y jX Q X Q   K N W K W

[ ] [ ] [ ][ ]p c x y j p c c x y y jX Q X Q     K N W K N W (50)

2 2 8[ ][ ] ( )  p c c x y y jX Q NaK Al Si O  K N W

 [ ][ ] Anorthoclasep c c x y y jX Q  K N W

[X : ] [90 :10] or [64:36]p c K

If [ ] [ ] [ ]p c c j p c p cX X X    K W K K

[ ][ ] [ ] [ ]p c c x y y j p c x y jX Q X Q     K N W K N W

[ ] [ ] 0p c x y iX Q   K N W

Also,

[ ]p c p cX X  K K

[ ] ,x y x yQ Q then  N N

[ ][ ] [ ] [ ] ;  thatp c y x y j p x y c y x yX Q X Q Q so       K N W N K N

[ ] [ ]p x y c x y jX Q Q   N K N W = ALKALINE SERIES (ANORTHOCLASE

3 8 3 8[ ] [ ] NaAlSi O +iKALSi Op x y c x y jX Q Q    N K N W

 series

[ ] [ ] 0p x y c x y

Anorthoclase

X Q Q    


N K N (51)

NaAlSi3O8 + iKAlSi3O8 = ALKALINE FELDSPAR

Then equation (51) above, is called Anorthoclase series.

a. Perthi te-antiperthite series

[ ] [ ] 0p x y j c x y jX Q Q    N W K N W

Then,
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[ ]  [ ]p x y j c x y jX Q Q    N W K N W (52)

3 8[ ] NaAlSi Op x y jX Q  N W

3 8[ ] AlSi Oc x y jQ K  K N W

NaAlSi3O8 = Albite

KAlSi3O8 = Orthoclase

[ ] ([ ]y x y j c x y j

Perthite

X Q i Q   


N W K N W (53)

3 8 3 8

Perthite

NaAlSi O iKAlSi O

Therefore, equation (53) is called Perthite, because [ ]  p x y jX Q exceedsN W

[ ]      c x y ji Q in the felsic silicate rockK N W

If [ ] [ ]  then;c x y j p x y jQ X Q    K N W N W

[ ] [ ]c x y j p x y j

Antiperthite

Q iX Q   

K N W N W (54)

3 8 3 8

Antiperthite

KAlSi O iNaAlSi O

Therefore, equation (232) is called Antiperthite, because [ ]   iX [ ]c x y j y x y jQ exceeds Q  K N W N W

in tℎe felsic silicate rock and is expressed mathematically in the above equation.

Anorthite, Albite and Orthoclase are secondary and corresponding feldspars in the felsic complex and Therefore with
[ ] [ ]p x y j c x y jX Q Q    N W K N W Albite and Orthoclase were formulated with respect to Bowen’s and

Goldschmidt concepts hence, with these formulations Bowen’s and Goldschmidt concepts are mathematically
connected.

Where, Al2Si2O8 is the Feldspar radical group for all corresponding Feldspar series in the light silicate complex?

K1[AlSi3]08

Si O2

+
Na1[AlSi3]08

Si O2

=
[(K1Na1)(Si6 Al2)]016

Si O2

(55)

Ortℎoclase
α−Quartz + Albite

β−Quartz = Pertℎite
Quartz

sodic−Granite + Potassic−Granite = [ Granite]

Given that;

2 2 8[ ]Ca Na Al Si O  

1 3 8[ ]0z K AlSi 

1 3 8[ ]0z Na AlSi 

Adam-Bashforth (1883) method of difference equation to the solution of differential equation as the size ( δ ) of
growing embryos (Z0) approach the critical growth radius ( δ c) to form a stable crystal nuclei (Z) and Cauchy’s
sequence and subsequence are used to analyze the Plagioclase feldspar group, using the two end members of Feldspar
series as shown Table 9, below.

K1[AlSi3]08 = Initial value and the sequence

Na1[AlSi3]08 = Modified value and the subsequence

Therefore, η represents the roots of the equation 1 4[ ][ ]p p y y iX Q  N W for Feldspar minerals

1 4[ ][ ]p p y y iX Q  N W for Feldspar minerals
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Therefore;

η = 4 for Mica and η = 0.8 for Feldspar

Then;

λ1 = (1, 1) for Feldspars

Table 9. The two End members of Feldspar group using Adams-Bashfort (1883) and Cauchy sequence

Adams-Bashfort (1883) Initial value Modified value Root

lim max ηz−εz =η
η→0,0≤p≤n ℰz = n η z = p λ2 λ2

Chemical formula −K [Al Si3O8 ] SiO2 Na Al Si3O8 SiO2 1, 1 0

Geologic name Orthoclase  -Quartz Albite β -Quartz 1, 1 0

Cauchy’s sequence Sequence Sequence Subsequence Subsequence First first

Lyapunov (1992) Stable Stable Stable Stable Neutral Neutra
l

Orthoclase and Albite are primary and corresponding feldspars in the feldspar c omplex. Therefore
Na Al Si3O8 −K [Al Si3O8 ] is tℎe alkaline series rock type of silicate. The presence of certain percentage of this
alkaline series in mica rock type gives the name of the rock type e.g alkaline mica Rhyolite and these were formulated
with respect to Bowen’s and Goldschmidt concepts and with these formulations Bowen’s and Goldschmidt concepts are
ma thematically connected.

For simultaneous reaction process in the magma, Ca 1−pNap [Si4−yAly] O8 is the Feldspar series formulae that can be
used to calculate all feldspar minerals from the melt W , where p is an integer and ranges from 0 to 1 in feldspar crystal.
At p equals to 1 for feldspar crystal, orthoclase and 0% anorthite(An0) called Albite will crystallize simultaneously from
the melt with chemical formulae of [K(Al)(Si3O8] and Na1[AlSi3]O8 and they are the sequences and initial values
during crystallization of feldspar from the melt. Therefore Orthoclase and Albite are the end members of Alkali feldspar
in the feldspar series and they set in matrices to form rocks of equivalent compositions.

Therefore with, Ca 1−pNap Si4−yAly O8 , Orthoclase and Albite were formulated with respect to Bowen’s and
Goldschmidt concepts and with this formulation Bowen’s and Goldschmidt concepts are mathematically connected.

4.4 Application of set Theory to Rock Forming Minerals in Magma

The theory of sets is an important tool in modern Mathematics. The study of sets has assumed a central role in every
branch of Mathematics today. Set theory can be applied in geology to study the distribution of trace and or REE in rock
after extensive geochemical analysis.

It is more precise to use set theory to probe or discriminate and delineate the distribution of trace elements in basaltic
liquid, rather than using matrix method throughout the time of crystallization of magma after geochemical analysis
using XRF.

4.4.1 Mathematical Analysis of Trace Elements in Mafic and Felsic Rocks.

The distribution of trace elements in mafic and felsic rock are greatly influenced by substitution of major element for
trace elements throughout the time of crystallization of magma under control condition of temperature, pressure,
composition of the liquid and solid, etc., according to Goldschmidt..

These substitutions depend on compactibility and incompatibility of trace elements, the ability of trace elements to
partition either in solid phase or in liquid phase.

A. Compactible Trace Element

In an equilibrium system composed of the crystal, and coexisting silicate melt compactible trace elements are those that
partition in solid phase. For trace elements to substitute for major elements during crystallization of silicate melt. You
considered that;

I. Their atoms must be approximately the same size e.g. substitution of Ni for Mg and Fe in ferromagnesian minerals.
II. Their atoms must be of similar charges e.g. Rb+ replaces k+.
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B. Incompatible Trace Element

In an equilibrium system composed of the crystal, and coexisting silicate melt, incompatible trace elements are
partitioned into the silicate melt. Incompatible trace elements can be subdivided based on its ionic potential (i), which is
express as the ratio of charge in valence unit (z) to its radius in Angstrom unit(r) as shown in equation (56). Therefore;

I = Z/R (56)

I = ionic potential

Z = charge

R = radius

Therefor elements with Z/R ˃ 2 are classed as high field strength elements. They are generally incompatible because of
the difficulty in achieving charge balance when these ions with Z =+3, to +6 substitute for major element cations with Z
=+2. Elements with Z/R < 2 are classed as large ion lithophile elements, and hence incompatible elements. They are
also low field strength elements.

C. Distribution of Trace Elements According To Partition Coefficient

The distribution of trace elements in mafic and felsic rocks depends on whether the trace elements are partition into the
solid phase or into the silicate melt. It is assumed that at equilibrium, the ratio of the concentration of trace element in
solid phase (Cs) to its concentration in the liquid (Cl) is constant as shown in equation (57), below.

D =Cs/Cl (57)

Where D = partition coefficient.

When D > 1, a particular trace element is partitioned into the solid phase, and when D< 1, a particular element is
partitioned into liquid phase provided that equilibrium is prevailed.

Analogy

The mathematical equations above can be represented using set Notation as shown in Figure 2, below.

Given that;

Kn=a, b, c, d, e, f, g, ℎ,

Such that

a, b, g=1

c, d <1

∴b, e, f are partitioned along tℎe solid pℎase Cs ,

c, d, are partioned along the Liquid phase (Cl)

a b g, are partitioned along the solid phase (Cs) and the Liquid phase (Cl)

∴Cs=b, e, f

Cl=c, d
Cs
CL

=a, b, g= Cs n CL

Cs u CL=a, b, c, d, e, f, g, ℎ

Figure 2. Set notation
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4.5 The Distribution of Rare Earth Elements (ree) in Basaltic Liquid and its Analysis Using set Notation Method

The Table 10 below shows the distribution of Rare Earth elements in amphibole, pyroxene, magnetite, and plagioclase.

Table 10. The distribution of Rare Earth elements (REE) in Basaltic Liquid

REE Amphibole Pyroxene Magnetite Plagioclase
La 0.54 0.33 0.29 0.16
Ce 0.98 0.56 0.35 0.12
Na 2.1 1.1 0.0 0.07
Sm 2.99 1.76 0.55 0.061
Eu 2.88 1.55 0.55 0.79
Dy 4.3 2.3 0.0 0.0
Yb 2.29 1.56 0.26 0.026
Lu 2.3 1.9 0.6 0.0

Using the set theory and Venn diagram, probe or discriminate Rare Earth elements (REE) in Basaltic liquid in Table 10
above, given the fact that Kd > 1, where Kd, = partition coefficient.

[  minerd [(1 m the rock)]+[ ]+[ ]d d inz inK K M M Z

20%py, 10% mag, 40%plag, 30% Am

Kd= 0.2x1.76 + 0.1x0.53 + 0.4x0.061 +0.3x2.99=1.32

Using set Notation,

Am∪Py∪Pl = La, Ce, Nd, Sm, Eu, Dy, Yb, Lu

1. (Am)∩(Py) = 0.2x1.76 + 0.3x2.99
(Am)∩(Py) = 1.249
(Am)∩(Py) > 1

2. (Am) (Pl) = Nd, Sm, Eu, Dy, Yb, Lu
(Am)∩(Py) = 0.4x0.061 +(0.2x1.76)
(Am)∩(Py) = 0.3764
(Am)∩(Py) < 1

3. (Pl) (Py) = Nd, Sm, Eu, Dy, Yb, Lu
(Am)∩(Py) = 0.2x1.76 +0.3x2.99
(Am)∩(Py) = 1.249
(Am)∩(Py) > 1

The Venn diagram is shown below;

(Am)∩(Py)>1

Figure 3. The Venn diagram showing the distribution of Rare Earth elements (REE) in Basaltic Liquid

From the Venn diagram above, Nd, Sm, Eu, Dy, Yb, Lu, are partitioned along the solid phases of Amphibole and
pyrxene at the end of crystallization.

La, Ce, are partitioned along the fluid phase at the end of crystallization. They are high field strength elements, and
cannot enter into the silicate structure, and remain in the fluid phase within their stability field to form gem minerals &
ore deposit
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4.6 Typical Partition Coefficient of Trace Elements between Crystals and Liquid and its Analysis using set
Notation Method

Table 11. Typical Partition Coefficient of Trace Elements between Crystals and Liquid

Tr
ac
e
El
e
m
en
tl

Trace elements in Basaltic liquid: from J.G., Arth, 1976,
Jour.Res.U.S. Geol. Surv. ,4: 41-47.

Trace elements in Basalt of KASSA
from the researcher.

Oli
vin
e

Pyro
xene

Pyr
oxe
ne

Amphi
bole Mica Plagiocl

ase Spinel Garn
et Converted Data in KASSA x100

S/N 1 2 3 4 5 6 7 8 KIA1 KIA2 KIA3 KIA4

1 Ni 4-
10 8.3 2.5 6.0 7.6 0.05 5.0 0.5 1.54 0.17 1.68

2 Cr 0.2 2.0 11.
5 5.2 7.0 0.06 10.0 2.0 2.26 0.07 1.72 2.15

3 Co 3.9 2.4 1.0 6.5 1.1 0.05 2.0 3.2 0.46 0.35 0.49 0.50

4 Sc 0.2 1.2 2.7 3.5 3.0 0.03 2.0 3.4

5 Sr 0.0
1 0.03 0.1

1 0.6 0.1 2.1 <0.1 <0.1 4.45 9.59 6.63 7.81

6 Ba 0.0
2 0.05 0.0

2 0.4 <0.1 0.38 <0.1 <0.1 4.23 8.77 8.89 5.11

7 Rb 0.0
2

0.00
6

0.0
3 0.4 2.0 0.09 <0.1 <0.1

M
n 1.17 1.35 1.43 1.35

Zr 1.56 2.71 1.92 1.97

V 1.69 1.93 1.69 1.67

Zn 1.07 1.33 1.17 1.31

Using set theory to probe or discriminate trace elements in Basaltic liquid, given the fact that D > 1, where D, =
partition coefficient, then, from Table 11 above, trace elements in;

Olivine (Ol) = Ni, Co
Pyroxene (Py) = Ni, Cr, Co, Sc

Plagioclase (Pl) = Sr
Suppose that all the trace elements in olivine, pyroxene and plagioclase are included in Basaltic liquid, it is pertinent to
know that, not all the trace elements in the same Basaltic liquid are included in essential olivine, pyroxene, and
plagioclase. This is because, the concentration of trace elements in solid to liquid depends on its “Partition
Coefficient” (D).

Given that, Basaltic liquid is a universal set of all included trace elements, ⋃ , then according to Prinz (1967)

U= {Ba, Sr, Ni, Cr, Ga. Li, V, Sc, Rb, Co, Cu}

Using set notation,

If Ol, Py, Pl, Z Xn, are sets of included trace elements, then their union is the set of all included trace elements which
belong to at least one of them and it is denoted by;

Ol Py..∪Xn = Xi

If the union is infinite, then, Ol, Py, Pl, Z, Xn is given by

Ol∪Py∪..∪Xn∪. = ⋃ Xi . (57)

⋃ Xi = {z∈⋃ } or {Ol∈⋃ } or {Py∈⋃ } or {Pl∈⋃ }. (58)
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⋃ Xi = {Z}∪{Ol∪Py}∪{Pl}. (59)

⋃ Xi = Basaltic liquid

The intersection, ∩ of sets Ol, Py, Pl, ZXn, is the sets of all included trace elements in the Basaltic liquid which belong to
every one of them and is denoted by

Ol∩Pyn .∩X = ∩Xi (60)

If the sets are infinite that is,

Ol∩Pyn ∩Xn = ∩Xi (61)
Let the set of included trace element in olivine, pyroxene and pyroxene are represented using set notation below,

Given that,

x∈Ol, x∈Py and y∈Pl, but z∉ x, y, z , where x and y are set of trace elements in olivine, pyroxene and plagioclase
and z is the remaining trace elements in the basaltic liquid, then
Ol∩Py = {x: x∈Ol, and x∈Py}

Ol∩Py = {Ni, Co}

Ol∩Pl = {x: x∈Ol} and {y: y∈Pl}

Ol∩Pl = Ø
Py∩Pl = {x: x∈Py} and {y: y∈Pl}

Py∩Pl = Ø

Ol∩Py∩Pl = [{x: x∈Ol, x∈Py} and {y: y∈Pl}]

Ol∩Py∩Pl = Ø
Ol∪Py ={x: x∈Ol, or x∈Py}

Ol∪Py = {Ni, Cr, Co, Sc,}

Ol∪Pl = {x: x∈Ol}, or {y: y∈Pl}

Ol∪Pl = {Ni, Co, Sr}

Py∪Pl = {x: x∈Py} or {y: y∈Pl}

Py∪Pl = {Ni, Co, Cr, Sc, Sr,}

Ol∪Py∪Pl = [{x: x∈Ol, or x∈Py} or {y: y∈Pl}]

Ol∪Py∪Pl = {Ni, Co, Cr, Sc, Sr,}

{Z}∪{Ol∪Py∪Pl}′= [{z: z∉ Ol, or z∉ Py or z∉ Pl}]

{Z}∪{Ol∪Py∪Pl} = {Ba, Ga, Li, V, Rb, Cu}

Using a vein diagram in Figure4 below, to represent the above set notation, we have;

Figure 4. Vein diagram representing partition coefficient of trace element in leucogranite
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Figure 5. Vein diagram representing partition coefficient of trace element in Basalt

Am = {Nl, Cr, Co, Sc}

Py∩Am = {Nl, Cr, Co, Sc}

Am∩Pl = Q

Py∪Am∪Pl = {Nl, Cr, Co, Sc, Sr}

Figure 6. Vein diagram representing partition coefficient of trace element in intermediate rock

From Figure 6, above, that at a given equilibrium during crystallization of magma, those trace elements within the
circles are partitioned in the solid phase and are compatible trace elements, while those outside the circles are
partitioned into the liquid phase and are incompatible trace elements which are ready to be partitioned, if any of the
conditions is altered such as drop in temperature. It is observed from the Figure 7, that olivine is a proper subset of
pyroxene, with the union of plagioclase are mutually inclusive in the Basalt.

Therefore, Ol Py is read as “Ol is proper subset of Py”.

Ol ⊂Py = Ol∩Py: Ol∪Py

= {x∈Ol, and x∈Py}

Ol∩Py = Ol

Ol∪Py = Py

{Ol∩Py}∩{Pl} = [{x: x∈Ol, x∈Py} and {y: y∈Pl}]

= Ø, mutually exclusive.

{Ol∪Py}∪{Pl} = Py∪Pl, mutually inclusive.

{Ol∪Py}∪{Pl} = [{x: x∈Ol, or x∈Py} or {y: y∈Pl}]

= Olivine Basalt
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Py∪Pl = [{x: x∈Py} or {y: y∈Pl}]

= Tholeiite Basalt

Olivine Basalt  Tholeiite Basalt

Undersaturation  Oversaturation of Olivine.

Undersaturation of olivine called “Olivine Basalt” to oversaturation of olivine called “Tholeiite Basalt”, means that
there is enough silica, according to Kennedy (1933) and included trace elements to convert all of the olivine to
pyroxene. Therefore, all the trace elements in olivine are included in pyroxene, but not all the trace elements in
pyroxene are included in olivine using set notations and vein diagrams as shown Figures 2, 3, 4, 5and 6 above.

4.7 Bowen’s and Goldschmidt Combined Models of Minerals and Rocks

Using Matrix and Set notation methods, this research work classifies minerals according to Goldschmidt and Bowen’s
concepts as shown in Figures 7, 8 and 9 below and minerals progress to the next minerals by polymerization reaction by
addition of more silica to the already crystallized minerals in a more silica rich melt. This means that according to
Bowen’s, with drop in temperature of magma olivine progresses to pyroxene by adding silica to olivine mineral,
pyroxene progresses to amphibole by addition of silica to pyroxene mineral, amphibole progresses to mica by addition
of silica to amphibole crystal, and so on. After this, Bowen’s postulated that the remaining melt at lower temperature is
quenched to produce the last crystals such as orthoclase, muscovite and quartz. This progressive reaction is what
Bowen’s called discontinuous reaction series, but for the purpose of this research, it is called polymerization reaction
because of addition of silica to the already crystallized crystal under thermodynamic change.

Bowen’s considers the reaction series of plagioclase feldspar as Continuous reaction series because of its continuous
exchange of element for one another with drop in temperature. For one element to substitute for one another in the
Goldschmidt space, it must follow Bowen’s index number 1 to 7 as shown in Table 12 below, such that first Bowen’s
index number under thermodynamic change, must undergo ionic substitution provided that there is Diadochi in the first
formed crystal in the Goldschmidt space.

The first Bowen’s index number is Forsterite of olivine, with Bowen’s Index number 1(one) in the Bowen’s series.
‘Forsterite ‘under thermodynamic change, would undergo ionic substitution in the Goldschmidt space to form fayalite
as the last end member of olivine in the olivine series. Both Forsterite, wholly magnesium rich olivine and Fayalite,
wholly iron rich olivine are formed within the olivine series with Bowen’s index number 1(one) as shown in Table 12,
Figures, 7, 8, and 9, below. Forsterite of olivine is the first sequence of mineral to crystallize from the melt, by
Cauchy’s sequence and initial value by Adams-Bashforth method while Fayalite is subsequence by cauchy’s sequence
and modified value by Adams-Bashforth method. This means by Cauchy’s definition of sequence, for all minerals in
Olivine group, there exist, Forsterite, and Fayalite, in {Olivine group} , such that is the first member and initial
mineral of {Olivine group} and Fayalite is the last member and modified mineral of {Olivine group}.

The second Bowen’s index number is Enstatite of pyroxene with Bowen’s Index number 2(Two) in the Bowen’s
reaction series and the ‘Enstatite’ under thermodynamic change, would undergo ionic substitution in the Goldschmidt
space to form Ferrosilte as the end member of pyroxene in the pyroxene series. Both Enstatite, wholly magnesium rich
pyroxene and Ferrosilite, wholly iron rich pyroxene are formed within the pyroxene series with Bowen’s index number
2(two) as shown in Table 12, Figures 7, 8 and 9 below. Enstatite of pyroxene is the second sequence of mineral to
crystallize from the melt, by Cauchy’s sequence and initial value by Adams-Bashforth method while Ferrosilite is the
subsequence by cauchy’s sequence and modified value by Adams-Bashforth method. This means by Cauchy’s
definition of sequence, for all minerals in Pyroxene group, there exist, Enstatite and Ferrosilite, in {Pyroxene group},
such that is the first member and initial mineral of {Pyroxene group} and Ferrosilite is the last member and modified
mineral of {Pyroxene group}.

The third Bowen’s index number is ‘Kupfferite’ of amphibole with Bowen’s Index number 3(Three) in the Bowen’s
reaction series and the ‘Kupfferite’ under thermodynamic change, would undergo ionic substitution in the Goldschmidt
space to form Grunerite as the end member of amphibole in the amphibole series. Both Kupfferite, wholly magnesium
rich amphibole and Grunerite, wholly iron rich amphibole are formed within the amphibole series with Bowen’s index
number 3(three) as shown in Tables 12, Figures 7, 8, and 9 below. Kupfferite of amphibole is the third sequence of
mineral to crystallize from the melt, by Cauchy’s sequence and initial value by Adams-Bashforth method while
Grunerite is the subsequence mineral to crystallize from the melt, by Cauchy’s sequence and modified value by Adams-
Bashforth method. This means by Cauchy’s definition of sequence, for all minerals in Amphibole group, there exist,
Kupfferite, and Grunerite, in {Amphibole group}, such that is the first member and initial mineral of {Amphibole
group} and Grunerite is the last member and modified mineral of {Amphibole group}.

The Fourth Bowen’s index number is ‘Phlogopite’ of mica with Bowen’s Index number 4(Four) in the Bowen’s
reaction series and the ‘Phlogopite’ under thermodynamic change, would undergo ionic substitution in the Goldschmidt
space to form Lepidomelane as the end member of mica in the mica series. Both Phlogopite, wholly magnesium rich
mica and Lepidomelane, wholly iron rich mica are within the mica series with Bowen’s index number 4(four) as shown
in Table 12, Figures 7, 8 and 9 below. Phlogopite of mica is the fourth sequence of mineral to crystallize from the melt,
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by Cauchy’s sequence and initial value by Adams-Bashforth method while Lepidomelane is the subsequence mineral to
crystallize from the melt, by Cauchy’s sequence and modified value by Adams-Bashforth method. This means by
Cauchy’s definition of sequence, for all minerals in Mica group, there exist, Phlogopite, and Lepidomelane,
in {Mica group} , such that is the first member and initial mineral of {Mica group} and Lepidomelane is the last
member and modified mineral of {Mica group}.

Number 5 in the series according to Bowen’s is Orthoclase, a potassium rich alkali feldspar and has an Index number of
5. Sometimes sodium can substitute for potassium in orthoclase to form the end member, albite, a sodium rich alkali
feldspar in the alkali series as shown in Table 12, Figures 7, 8 and 9 below. Both the potassium rich orthoclase and
sodium rich Albite are formed within the alkali feldspar series and they exist at high temperature as Perthite –
Antiperthite mixed feldspar and have separate phase at lower temperature as perthite when orthoclase exceeds albite
and Antiperthite when albite exceeds orthoclase. This process is called EXSOLUTION in rock forming minerals from
the alkali melt m . Orthoclase of alkali feldspar is the fifth sequence of mineral to crystallize from the melt, by
Cauchy’s sequence and initial value by Adams-Bashforth method while Albite is the subsequence mineral to crystallize
from the melt, by Cauchy’s sequence and modified value by Adams-Bashforth method. This means by Cauchy’s
definition of sequence, for all minerals in alkali feldspar, there exist, orthoclase, and Albite,
in {Alkali feldspar group}, such that is the first member and initial mineral of {Alkali feldspar group} and Albite is
the last member and modified mineral of {Alkali feldspar group}.

The sixth Bowen’s index number is ‘Muscovite’ of white mica with Bowen’s Index number of 6(six) in the Bowen’s
reaction series and the ‘Muscovite’ under thermodynamic change, would undergo ionic substitution in the Goldschmidt
space to form Paragonite as the end member of mica in the white mica series. Both Muscovite, wholly potassium rich
white mica and Paragonite, wholly sodium rich white mica are formed within the white mica series with Bowen’s
index number 6(six) as shown in Table 12, Figures 7, 8 and 9 below. The process in which minerals formed by
substitution of one element for anther using Goldschmidt concept is called Isomorphous series in this research.
Muscovite of white mica is the sixth sequence of mineral to crystallize from the melt, by Cauchy’s sequence and initial
value by Adams-Bashforth method while Grunerite is the subsequence mineral to crystallize from the melt, by Cauchy’s
sequence and modified value by Adams-Bashforth method. This means by Cauchy’s definition of sequence, for all
minerals in white mica group, there exist, Muscovite, and Paragonite, in {White mica group}, such that is the first
member and initial mineral of {White mica group} and Paragonite is the last member and modified mineral of
{White mica group}.

Table 12. Order of Crystallization of Minerals using Goldschmidt Concept

Temp Felsic Mafic Olivine Pyroxene Amphibole Black
mica Feldspar White

mica
Quart

z

2000 Anorthite 1 Forsterite

1000 Bytownit
e 2 Mgnesio-

chrysolite Enstatite

900 Labrador
ite 3 Chysolite Mnesio-

hypersthene Kupfferite

800 Andesine 4 Hyalosideri
te Hypersthene Magnesio-

Anthophyllite
Phlogopit

e

700 Oligoclas
e 5 Hortonolite Ferro-

hypersthene Anthophyllite Biotite Orthoclase

600 Albite 6 Ferro-
hortonolite Eulite cummingtoni

te
Ferro-
biotite Perthite muscovit

e

500 Quartz 7 Fayalite Ferrosilite Grunerite Lepidome
lane Albite Paragonit

e
Quart

z
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Figure 7. Mathematical Computations of Minerals in Bowen’s and Goldschmidt Combined Model

XYZ = Mafic Compositions

X1Y1Z = Felsic Compositions

Where;

1.XYZ And X1Y1Z = Goldschmidt space

2.XX1Z = Bowen’s space.

Figure 8. Mathematical Computations of Minerals in Bowen’s and Goldschmidt Combined Model
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XYZ = Mafic Minerals

X1Y1Z = Felsic Minerals

Where;

1. XYZ And X1Y1Z = Goldschmidt space

2. XX1Z = Bowen’s space.

4.8 Bowen’s Index Number of Rock Forming Minerals and its Relationship with Goldschmidt Concept

Bowen’s index number of rock forming minerals is the identity of minerals in Rocks under microscopic studies either
plane or cross polarized light as is used in this research. The identity of minerals in rocks literally means identification
of minerals in rocks using microscope. Analogically, if the mineral being observed under microscope is olivine,
therefore the identity of minerals being observed in rock under microscope is actually the ‘olivine mineral’ and the
identification number called Bowen’s index is 1 (one) as shown Table 13 and Figure 9 below. This means in Bowen’
reaction series olivine is 1 and the first mineral to crystallize from the melt. Pyroxene has identification number of 2,
amphibole 3 and that of mica is 4 as shown in Table 13 Figure 9 below.

After identification number, the next is mineralogical name of the minerals and how it mathematically transforms from
one form to the other within their own structural identity under thermodynamic change. Analogically, the first olivine
mineral that forms is enriched in magnesium and the mineralogical name is forsterite, and is ‘a sequence’ according to
Cauchy sequence and ‘initial value’, according to Adams-Bashforth method, therefore in mathematical relation to
Goldschmidt concept as shown in Figure (9), iron substitutes for magnesium in forsterite crystal, at least about 100% to
produce Fayalite of the same structure as the forsterite or which has the same structural identity as the forsterite. This
continues as enstatite changes to Ferrosilite of the same structural identity, kupfferite changes to Grunerite of the same
structural identity, and phlogopite changes to lepidomelane of the same structural identity as shown Table 13, Figure 9
below. Therefore the sequence and subsequence by Cauchy’s definition of sequence and as well as initial and modified
value by Adams – bashforth method of this reaction process mathematically connects the relationship between Bowen’s
concept and the Goldschmidt concept in this research. Hence this gives the complete explanation of rock forming
minerals throughout the time of crystallization under thermodynamic change to some extent
Table 13. Sequence and Subsequence of Minerals by Cauchy sequence using Bowen’s and Goldschmidt concepts

Bowen’s Index Number Mineral observed
under thin section Sequence/Initial value Subsequence/Modified value

1 Oli vene Forsterite Fayalite

2 Pyroxene Enstatite Ferrosilite

3 Amphibole Kupfferite Grunerite

4 Mica Phlogopite Lepidomelane

5 Mica Muscovite Paragonite

6 Alkaline Feldspar Orthoclase Albite

7 Plagioclase feldspar Anorthite Albite
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Figure 9. Model of Order of Crystallization and Mapping of Minerals under thermodynamic change

5. Conclution

In conclusion, findings have shown that both Goldschmidt and Bowen’s concepts concerning distribution of elements
and elemental substitution in igneous rocks can be mathematically connected throughout the formation of igneous rocks
from the beginning to the end of crystallization through the following mathematical foundation under thermodynamic
change.

1. Mathematical equations, Metrical matrix and Set notation methods find its application in geology especially the
formation of rock forming minerals during crystallization of magma as they are applicable to other science and
engineering disciplines.

2. Cauchy’s definition of sequence can be applied during minerals formation from magma.
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