

4D-Printed Shape-Memory Architectures for Biomedical Devices and Morphing Systems

Hinewairua Jones

Department of Materials Science and Engineering, University of Waikato, Mirohua Avenue, Tauranga 3112, New Zealand

Abstract

Four-dimensional (4D) printing, an advanced evolution of additive manufacturing (AM), creates objects that can transform their shape, properties, or functionality over time in response to specific external stimuli. This technology synergizes the design freedom of 3D printing with the dynamic capabilities of smart materials, particularly shape-memory polymers (SMPs) and their composites. This review article comprehensively explores the burgeoning field of 4D-printed shape-memory architectures, with a focused analysis on their transformative applications in biomedical devices and morphing systems. We begin by elucidating the fundamental mechanisms of the shape-memory effect (SME) in polymers and the critical role of material composition, programming methods, and stimulus-responsive behavior. The core of the discussion details the various 4D printing techniques—including material extrusion, vat photopolymerization, and powder bed fusion—suitable for processing SMPs, highlighting their respective advantages and limitations. A significant portion of the review is dedicated to groundbreaking applications in biomedicine, such as self-fitting implants, programmable stents, smart drug delivery systems, and minimally invasive surgical tools that can be deployed upon implantation. Parallelly, we investigate the use of 4D printing in creating morphing systems for broader engineering applications, including soft robotics, aerospace components, and adaptive structures. Finally, we address the current challenges, including material biocompatibility and long-term stability, printing resolution and scalability, and multi-material complexity, while projecting future research trajectories toward multi-stimuli responsiveness, predictive modeling, and full-scale industrial adoption. The integration of 4D printing with shape-memory architectures heralds a paradigm shift towards intelligent, adaptive, and personalized solutions across critical technological domains.

Keywords

4D Printing, Shape-Memory Polymers, Smart Materials, Additive Manufacturing, Biomedical Devices, Morphing Systems, Stimuli-Responsive

1. Introduction

Additive manufacturing (AM), or 3D printing, has revolutionized prototyping and manufacturing by enabling the layer-by-layer fabrication of complex, customized geometries directly from digital models [1]. While 3D printing excels at creating static structures, the next frontier in manufacturing lies in embedding dynamic, life-like functionality into printed objects. This vision is realized through four-dimensional (4D) printing, a term coined by Tibbits (2014) that introduces "time" as the fourth dimension. 4D printing refers to the fabrication of objects that can autonomously change their shape, property, or function in a pre-programmed manner when exposed to a specific external stimulus, such as heat, light, moisture, or a magnetic field [2].

The core enabler of 4D printing is the integration of smart materials into the AM process. Among these, shape-memory polymers (SMPs) stand out due to their remarkable ability to recover a permanent, "remembered" shape from a temporary, deformed shape upon application of the appropriate stimulus. This shape-memory effect (SME), when combined with the geometric freedom of 3D printing, allows for the creation of sophisticated architectures that can perform complex morphological transformations. This capability is particularly transformative for fields where adaptability and environmental interaction are paramount [3].

This article aims to provide a thorough examination of the state-of-the-art in 4D-printed shape-memory architectures, with a dual focus on two highly impactful domains: biomedical devices and morphing systems. In biomedicine, 4D printing offers the potential for patient-specific implants that self-adjust to anatomical structures, minimally invasive devices that deploy *in situ*, and smart drug delivery systems that release therapeutics in response to physiological cues. Beyond the human body, morphing systems in aerospace, soft robotics, and architecture can benefit from lightweight, efficient structures that change their configuration to optimize performance under varying conditions, such as wings that alter their airfoil or grippers that gently conform to objects [4].

The structure of this review is as follows: Section 2 delves into the fundamental principles of the shape-memory effect in polymers. Section 3 explores the various 4D printing techniques compatible with SMPs. Section 4 provides an in-depth analysis of applications in biomedical devices, supported by recent research. Section 5 shifts the focus to

morphing systems in engineering applications. Section 6 discusses the significant challenges and future perspectives, and Section 7 concludes the article.

2. Fundamentals of the Shape-Memory Effect in Polymers

The shape-memory effect is a unique property of certain materials that allows them to be programmed into a temporary shape and later recover their original, permanent shape upon exposure to an external stimulus. In polymers, this phenomenon is governed by their molecular architecture and thermal transitions.

2.1 Molecular Mechanism

The SME in thermoresponsive SMPs, the most common type, relies on a combination of netpoints and molecular switches. The netpoints, which can be chemical (covalent crosslinks) or physical (crystalline domains, entanglements, or glassy regions), determine the permanent shape. The molecular switches are polymer chain segments that become mobile above a specific transition temperature (T_{trans}), which can be either a glass transition temperature (T_g) or a melting temperature (T_m) [5].

The programming and recovery cycle involves three key steps:

1. Programming (Deformation): The polymer is heated above its T_{trans} , where the molecular switches become soft and rubbery. An external force is applied to deform the material into the desired temporary shape.

2. Fixing (Cooling): While the deformation force is maintained, the polymer is cooled below T_{trans} . This freezes the molecular switches, locking the chains in a non-equilibrium state and stabilizing the temporary shape [6].

3. Recovery (Stimulus Application): Upon reheating above T_{trans} , the molecular switches regain mobility, allowing the entropic elasticity of the polymer chains to drive the material back to its permanent, lowest-energy configuration.

2.2 Key Material Properties and Stimuli

The performance of an SMP is characterized by several key metrics:

- **Shape Fixity (R_f):** The ability to fix the temporary shape.
- **Shape Recovery (R_r):** The ability to recover the permanent shape.
- **Recovery Stress:** The force generated during the recovery process, crucial for applications requiring mechanical work.
- **Actuation Speed:** The rate at which recovery occurs.

While heat is the most common stimulus, other triggers are increasingly being utilized to make 4D printing more versatile and applicable, especially in biomedicine:

- **Light:** Photosensitive SMPs incorporate molecular switches like cinnamylidene acetate or azobenzene groups that undergo reversible crosslinking or isomerization upon exposure to specific wavelengths.
- **Solvent/Moisture:** Hydrogels or hygroscopic polymers absorb water or solvent, which plasticizes the polymer chains, effectively lowering T_g and triggering swelling-induced shape recovery [7].
- **Magnetic Fields:** SMP composites are embedded with magnetic nanoparticles (e.g., Fe₃O₄). When exposed to an alternating magnetic field, these particles generate heat via induction, which in turn triggers the thermal SME of the polymer matrix. This allows for remote, contactless activation.
- **Electricity:** Conductive fillers like carbon nanotubes or graphene can be added to create electrically resistive SMP composites that heat up when a current is passed, enabling Joule heating as the stimulus.

3. 4D Printing Techniques for Shape-Memory Polymers

The successful implementation of 4D printing requires AM technologies that are compatible with SMPs and their often complex processing requirements. The choice of printing method directly influences the resolution, actuation speed, and complexity of the resulting 4D structure [8].

3.1 Material Extrusion (Fused Deposition Modeling - FDM)

FDM is the most widely used technique for 4D printing with SMPs due to its accessibility and low cost. It involves feeding a thermoplastic filament through a heated nozzle, where it is melted and deposited layer-by-layer.

- **Advantages:** Low cost, wide material selection, multi-material capabilities.
- **Challenges:** Anisotropy due to layer-by-layer deposition and weak interlayer bonding can affect the shape-memory performance. Resolution is limited compared to other methods.
- **Materials:** Commercial SMP filaments like polyurethane-based (e.g., TPI, Thermoplastic Polyurethane) and polylactic acid (PLA) are commonly used. A key strategy involves printing with an elastic "strain limit" material and a rigid "driver" material to create complex, programmable hinges [9].

3.2 Vat Photopolymerization (Stereolithography - SLA & Digital Light Processing - DLP)

These techniques use a light source (laser or projector) to selectively cure a liquid photopolymer resin in a vat.

- **Advantages:** High resolution and surface finish, excellent for creating intricate micro-architectures. Ideal for manufacturing biomedical devices requiring fine features.

- **Challenges:** Limited material options, as resins must be photocurable. Post-processing (washing, post-curing) is required.

- **Materials:** Photosensitive SMP resins are formulated with monomers and oligomers that form crosslinked networks upon UV light exposure. The chemistry can be tailored to achieve a wide range of T_g and mechanical properties.

3.3 Powder Bed Fusion (Selective Laser Sintering - SLS)

SLS uses a laser to sinter powdered polymer particles together layer by layer.

- **Advantages:** No need for support structures (the unsintered powder acts as support), good mechanical properties, and high design freedom for complex internal geometries.

- **Challenges:** Higher equipment cost, limited material availability for SMPs, and the powder can be difficult to fully remove from intricate parts.

- **Materials:** Polyamide (Nylon) composites are common, but recent developments include powder-form TPU and other elastomers that can be processed to exhibit shape-memory properties [10].

3.4 Direct Ink Writing (DIW)

DIW, a form of robocasting, extrudes a viscous paste or "ink" in a continuous filament to build a structure.

- **Advantages:** Can process a very wide range of materials, including hydrogels, silicones, and particle-filled composites, which are often not suitable for other AM methods.

- **Challenges:** Requires careful control of ink rheology (shear-thinning behavior) to maintain shape fidelity after deposition.

- **Materials:** Ideal for printing soft, moisture-responsive SMPs and hydrogel-based systems for biomedical applications.

Table 1. Comparison of 4D Printing Techniques for SMPs

Printing Technique	Typical SMP Materials	Stimuli	Advantages	Limitations
Material Extrusion (FDM)	TPU, PLA, PCL	Thermal, Moisture	Low cost, multi-material	Anisotropy, low resolution
Vat Photopolymerization (SLA/DLP)	Photocurable Acrylates, Epoxies	Thermal, Light	High resolution, smooth surface	Limited material library, brittle resins
Powder Bed Fusion (SLS)	Polyamide, TPU powder	Thermal	Self-supporting, strong parts	High cost, limited SMP powders
Direct Ink Writing (DIW)	Hydrogels, Silicones, Composites	Solvent, Ionic, Magnetic	Versatile materials, soft robotics	Low speed, rheological challenges

Table 1 summarizes the commonly used shape memory polymer (SMP) printing technologies in 4D printing and provides a clear comparison of the four main printing methods in terms of materials, stimulation methods, advantages and limitations. Table 1 compares different manufacturing technologies for 4D printed shape memory materials, showing their material types, stimulus triggering methods, advantages and limitations, helping to understand which technology is suitable for different types of 4D functional structures.

4. Applications in Biomedical Devices

The synergy of 4D printing and SMPs is poised to revolutionize biomedical engineering by creating devices that are not only patient-specific but also dynamic and adaptive to the physiological environment [11].

4.1 Self-Fitting and Minimally Invasive Implants

A major application is in creating implants that can be inserted through a small incision in a compact, temporary shape and then expand to their functional, permanent shape inside the body.

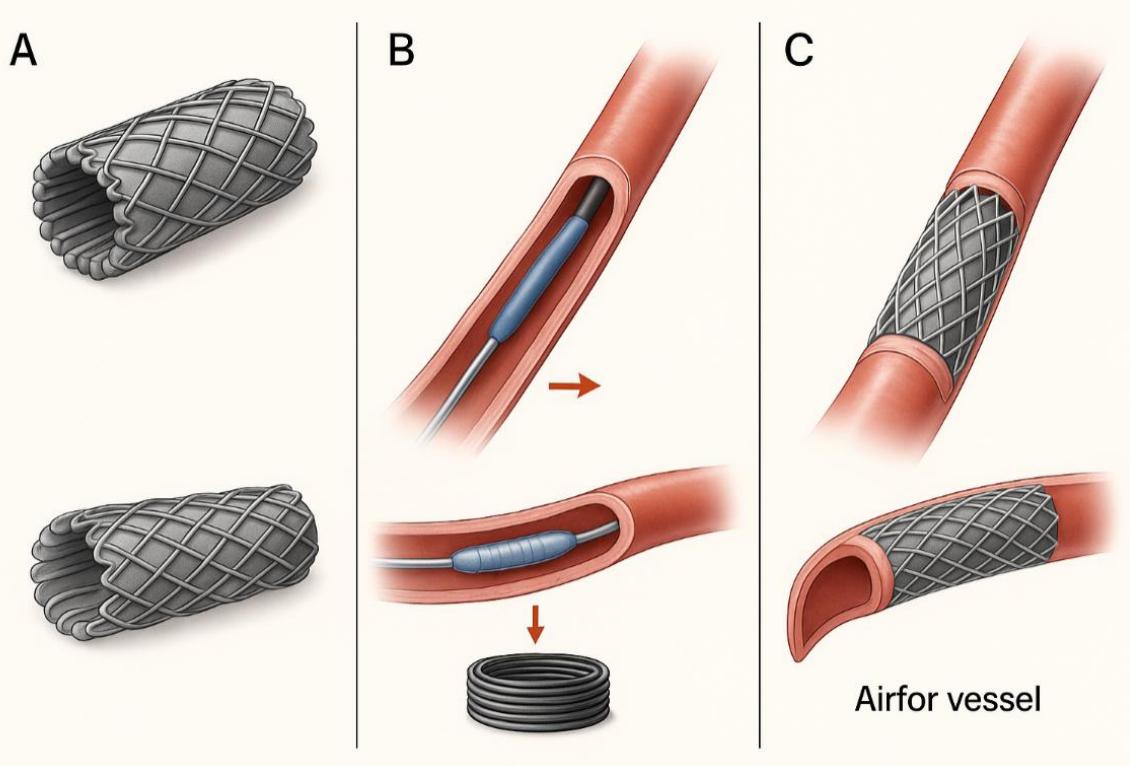
- **Vascular Stents:** 4D-printed SMP stents can be compressed and delivered via catheter to a blocked artery. Upon exposure to body heat ($\approx 37^\circ\text{C}$), the stent expands, pushing the plaque against the arterial wall and restoring blood flow. This eliminates the need for a balloon catheter for expansion, simplifying the procedure. Research focuses on tuning the T_g of the polymer to be just below body temperature for optimal deployment.

- **Bone Implants and Scaffolds:** Craniofacial or orthopedic implants can be 4D-printed to have a temporary shape that is easy to implant. Once in place, they can self-expand or change shape to apply a controlled, continuous force, mimicking the principles of distraction osteogenesis. Porous scaffolds with shape-memory properties can be compressed for implantation and then expand to fill a bone defect, promoting osteointegration [12].

4.2 Smart Drug Delivery Systems

4D printing enables the fabrication of sophisticated drug carriers that release their payload in response to specific biological cues.

- **Stimuli-Responsive Microneedles:** Arrays of microneedles can be printed from a swellable SMP or hydrogel. Upon insertion into the skin and absorption of interstitial fluid, the needles swell, opening up micro-pores or releasing encapsulated drugs in a controlled manner.


- **Programmable Capsules:** Oral capsules can be designed with a 4D-printed SMP shell that remains closed in the stomach but opens in the intestine (triggered by a pH change or enzymatic activity) to ensure targeted drug release. The transformation can be programmed to release the drug in pulses or at a specific location in the gastrointestinal tract [13].

4.3 Surgical Tools and Robotics

4D printing facilitates the development of intelligent surgical instruments and soft robotic tools.

- **Self-Loosening Sutures:** SMP sutures can be programmed to tighten to a specific tension after application, compensating for tissue swelling, or to loosen and degrade after a certain healing period.

- **Soft Robotic Grippers:** For minimally invasive surgery, soft grippers made from biocompatible SMPs can be delivered in a straight, rigid form. Upon reaching the surgical site, body heat or a targeted light source activates them, causing them to curl and gently grasp tissue or foreign objects. This reduces the risk of tissue damage compared to rigid tools [14].

Figure 1. Conceptual diagram of a 4D-printed biomedical stent

Figure 1 illustrates the working principle and deployment process of a thermally activated shape-memory stent in a blood vessel. It uses three panels (A, B, and C) to explain the entire process from stent compression to placement and deployment. This figure explains how a shape memory stent goes through the process of "compressed state \rightarrow delivery to blood vessels \rightarrow body temperature activation and expansion" to restore blood vessel patency.

5. Applications in Morphing Systems

Beyond biomedicine, 4D-printed SMPs are enabling a new generation of lightweight, efficient, and adaptive morphing systems for aerospace, soft robotics, and consumer products.

5.1 Soft Robotics and Grippers

Traditional robots made of rigid components are ill-suited for handling delicate objects or operating in unstructured environments. 4D-printed soft robots made from SMPs and their composites offer a compelling alternative [15].

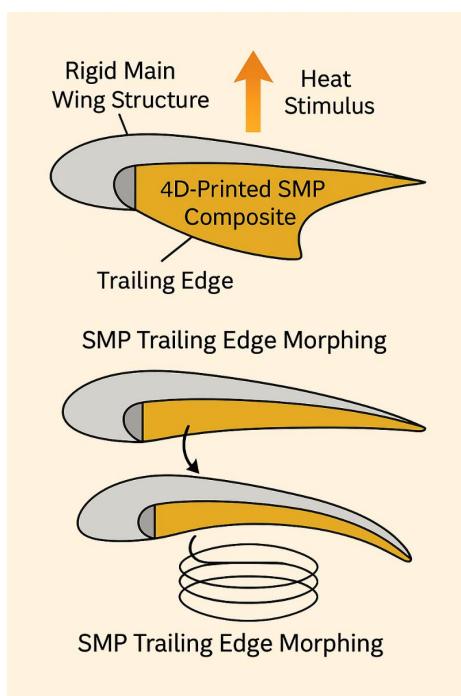
- **Grasping and Manipulation:** A 2D or 3D-printed SMP structure can be programmed to fold or curl upon stimulation, creating a gripper that can pick up objects. By patterning the material distribution or the stimulus application, complex motions like twisting and peristalsis can be achieved. Magnetic SMP composites are particularly attractive as they allow for wireless, remote control of the robotic actuator.

- **Locomotion:** Crawling or walking robots can be created by designing sequential actuation in different parts of the body. For instance, a light source can be scanned across a robot to trigger a wave of shape recovery that propels it forward.

5.2 Aerospace Structures

The aerospace industry relentlessly pursues weight reduction and adaptive efficiency. 4D printing offers a pathway to multifunctional structures that can change shape in flight.

- **Morphing Wings:** Winglets or trailing edge flaps can be 4D-printed with SMP composites. In a cold, high-altitude environment, they maintain a streamlined shape. As the aircraft descends or conditions change, embedded heaters could activate the SMP, causing the wing surface to morph into a more aerodynamically efficient configuration for landing or maneuvering. This eliminates the need for heavy and complex hydraulic actuation systems [16].


- **Deployable Structures:** Antennas, solar panels, and other components for satellites can be printed in a compact, temporary shape for launch. Once in orbit, the heat from the sun or an embedded heater would trigger deployment to their full functional size, saving crucial payload volume.

5.3 Adaptive Consumer Products and Textiles

The principles of 4D printing are finding applications in everyday objects, creating products with enhanced functionality and user experience.

- **Smart Textiles:** Fibers or fabrics can be 4D-printed to change their porosity in response to body heat or sweat. A garment could become more breathable during exercise and return to an insulating state when cool, providing dynamic thermal comfort.

- **Self-Assembling Furniture:** Flat-pack furniture could be designed to self-assemble upon application of a simple stimulus like heat or water, reducing the complexity and effort required from the end-user.

Figure 2. Schematic of a 4D-printed morphing airfoil

Figure 2 show the principle of using 4D printing shape memory polymer (SMP) materials to achieve deformation of the tail edge of an aircraft wing. This is a schematic diagram of a deformable aircraft structure (Morphing Wing), illustrating how 4D-printed shape memory polymer (SMP) can be used to change the shape of the wing's trailing edge by heating, thereby adjusting aerodynamic performance. This figure illustrates how 4D-printed shape memory polymers (SMPs) can change the shape of an aircraft wing trailing edge after heating, enabling intelligent, adaptive, deformable aircraft structures.

6. Challenges and Future Perspectives

Despite the significant progress, the field of 4D-printed shape-memory architectures faces several challenges that must be addressed to achieve widespread clinical and industrial adoption.

6.1 Material Challenges

- **Biocompatibility and Degradation:** For implantable devices, the SMP and any additives (e.g., nanoparticles) must be fully biocompatible and non-toxic. The degradation products of biodegradable SMPs must also be safe. Long-term in vivo studies are still needed for many 4D-printed materials.

- **Material Property Limitations:** Many SMPs suffer from low recovery stress, slow actuation speed, and limited cycle life (fatigue after repeated actuation). Developing new polymer chemistries and composites with enhanced mechanical properties is a key research direction.

6.2 Manufacturing and Design Challenges

- **Multi-Material Printing:** Creating complex devices often requires the integration of multiple materials with different properties (e.g., a stiff material and a soft, active material). Current multi-material 4D printing techniques face challenges with interface bonding, material contamination, and processing compatibility [5].

- **Resolution and Scalability:** While high-resolution techniques like SLA exist, they are often slow and not suited for mass production. Scaling up 4D printing for high-volume manufacturing while maintaining precision and programmable functionality remains a hurdle.

- **Predictive Modeling and Simulation:** The transformation of a 4D-printed object is a complex multi-physics problem involving material behavior, structural mechanics, and stimulus interaction. Developing accurate computational models to predict the final shape and performance from the initial design is critical for advancing the field beyond trial-and-error approaches.

6.3 Future Perspectives

The future of 4D printing lies in increasing intelligence and complexity.

- **Multi-Stimuli Responsive Systems:** Future architectures will respond to multiple stimuli (e.g., pH and temperature, or light and magnetic field) in a sequential or logic-gated manner, enabling more sophisticated and environmentally aware behaviors.

- **Integration with Sensing and Control:** Embedding sensors within the 4D-printed structure to create a closed-loop system is the next logical step. For example, a stent could incorporate a pressure sensor and only change shape if a certain pressure threshold is exceeded.

- **Bio-hybrid Systems:** Combining 4D-printed scaffolds with living cells (bioprinting) to create tissues that can grow and change shape over time represents a revolutionary direction for tissue engineering.

- **Machine Learning for Design:** AI and machine learning algorithms can be used to inversely design the optimal material distribution and printing parameters to achieve a desired complex shape change, drastically accelerating the design process.

7. Conclusion

4D printing of shape-memory architectures represents a paradigm shift in the design and manufacturing of dynamic systems. By seamlessly integrating the geometric freedom of additive manufacturing with the active, responsive capabilities of shape-memory polymers, this technology is unlocking new possibilities across critical domains. In biomedicine, it paves the way for a new era of personalized, minimally invasive, and intelligent devices that adapt to the human body. In engineering, it enables the creation of lightweight, efficient, and multifunctional morphing systems for soft robotics and aerospace. While challenges related to materials, manufacturing, and modeling persist, the rapid pace of research and development promises to overcome these hurdles. The convergence of 4D printing with advances in material science, computational design, and bio-integration will undoubtedly lead to the creation of ever more sophisticated and life-like intelligent systems, fundamentally changing our interaction with technology and the human body.

References

- [1] Tibbits, S. (2014). 4D printing: Multi-material shape change. *Architectural Design*, *84*(1), 116–121. <https://doi.org/10.1002/ad.1710>
- [2] Lendlein, A., & Kelch, S. (2002). Shape-memory polymers. *Angewandte Chemie International Edition*, *41*(12), 2034–2057. [https://doi.org/10.1002/1521-3773\(20020617\)41:12%3C2034::AID-ANIE2034%3E3.0.CO;2-M](https://doi.org/10.1002/1521-3773(20020617)41:12%3C2034::AID-ANIE2034%3E3.0.CO;2-M)
- [3] Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Qi, H. J. (2015). Sequential self-folding structures by 3D printed digital shape memory polymers. *Scientific Reports*, *5*(1), 13616. <https://doi.org/10.1038/srep13616>
- [4] Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. *Applied Physics Letters*, *103*(13), 131901. <https://doi.org/10.1063/1.4819837>
- [5] Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. *Nature Materials*, *15*(4), 413–418. <https://doi.org/10.1038/nmat4544>
- [6] Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., & Magdassi, S. (2016). 3D printing of shape memory polymers for flexible electronic devices. *Advanced Materials*, *28*(22), 4449–4454. <https://doi.org/10.1002/adma.201503132>
- [7] Kim, Y., Yuk, H., Zhao, R., Chester, S. A., & Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. *Nature*, *558*(7709), 274–279. <https://doi.org/10.1038/s41586-018-0185-0>
- [8] Gibson, I., Rosen, D., & Stucker, B. (2021). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing (3rd ed.). Springer. <https://doi.org/10.1007/978-1-4939-2113-3>
- [9] Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. *Scientific Reports*, *6*(1), 31110. <https://doi.org/10.1038/srep31110>
- [10] Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., Dunn, M. L., & Qi, H. J. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. *Scientific Reports*, *6*(1), 24224. <https://doi.org/10.1038/srep24224>
- [11] van Manen, T., Janbaz, S., & Zadpoor, A. A. (2017). Programming 2D/3D shape-shifting with hobbyist 3D printers. *Materials Horizons*, *4*(6), 1064–1069. <https://doi.org/10.1039/C7MH00269F>
- [12] Huang, L., Jiang, R., Wu, J., Song, J., Bai, H., Li, B., Zhao, Q., & Xie, T. (2017). Ultrafast digital printing toward 4D shape changing materials. *Advanced Materials*, *29*(7), 1605390. <https://doi.org/10.1002/adma.201605390>
- [13] Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. *Virtual and Physical Prototyping*, *10*(3), 103–122. <https://doi.org/10.1080/17452759.2015.1097054>
- [14] Bakarich, S. E., Gorkin III, R., in het Panhuis, M., & Spinks, G. M. (2015). 4D printing with mechanically robust, thermally actuating hydrogels. *Macromolecular Rapid Communications*, *36*(12), 1211–1217. <https://doi.org/10.1002/marc.201500079>
- [15] Kokkinis, D., Schaffner, M., & Stuwart, A. R. (2015). Multimaterial magnetically assisted 3D printing of composite materials. *Nature Communications*, *6*(1), 8643. <https://doi.org/10.1038/ncomms9643>
- [16] Zhang, Y., Zhang, F., Yan, Z., Ma, Q., Li, X., Huang, Y., & Rogers, J. A. (2017). Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. *Nature Reviews Materials*, *2*(4), 17019. <https://doi.org/10.1038/natrevmats.2017.19>